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Résumé en français

C
omment peut-on chiffrer une base de données tout en conservant un certain nombre
de fonctionnalités, et en particulier la possibilité d’e�ectuer e�cacement des recherches
sur le contenu de cette base ? C’est à cette question que nous allons tenter de répondre dans

cette thèse. Si elle semble simple, nous allons voir qu’en pratique, trouver une solution à ce problème
est a�aire de compromis entre sécurité et performance.

Ce chapitre va introduire cette problématique d’algorithmes de recherche sur des bases de données
chi�rées puis résumer les solutions que j’ai développées durant mon doctorat. En�n, je donnerai un
aperçu rapide de deux autres travaux portant sur des sujets di�érents (mais qui traitent toujours de
cryptographie) et qui ne seront pas détaillés dans cette thèse.
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vi Résumé en Français

Chi�rement de base de données

Pourquoi chi�rer des bases de données?

Au cours des dernières décennies, quantité de données a été progressivement externalisée depuis
leurs possesseurs vers des fournisseurs de service, allant de la messagerie électronique, jusqu’aux
informations sur des comptes bancaires, des consommateurs ou encore des photos personnelles.
De plus en plus d’entreprises décident d’utiliser des plates-formes collaboratives dans leur travail
quotidien. De même, certaines sociétés ne veulent plus avoir à gérer une infrastructure locale pour
stocker la quantité sans cesse croissante d’information à laquelle ils ont à faire. Des fournisseurs
tels que Google, Amazon, Apple, Microsoft, IBM, Dropbox, ou beaucoup d’autres, o�rent une large
gamme de services, tels que messagerie électronique, hébergement de �chiers, édition collaborative
de documents ou encore de sauvegarde appelés de façon générique ‘le Cloud’. Ces services sont
très séduisants pour les sociétés privées, pour le grand public et voire pour le secteur public, car ils
permettent à leurs utilisateurs de “se concentrer sur les données plutôt que sur l’infrastructure”, et
ce à un tarif très compétitif et avec de bonnes garanties de disponibilité et de sûreté.

Dans le même temps, la protection des données est devenue une question importante pour nombre
d’entreprises travaillant sur des données sensibles. La première raison à cela est le développement
d’une législation obligeant ces entreprises à sécuriser leurs données, en particulier lorsqu’il s’agit
d’informations personnelles. Pour donner des exemples de telles lois, nous pouvons citer le Titre
II de la loi HIPPA (Health Insurance Portability and Accountability Act) de 1996 pour le secteur
de la santé et la loi Sarbanes–Oxley pour le secteur �nancier aux États-Unis d’Amérique, et pour
l’Union Européenne, le Règlement général sur la protection des données, qui remplace la Directive sur la
protection des donnés. Ces lois cherchent à prévenir la révélation ou l’accès, illégal ou non autorisé, aux
données sensibles. Dans la plupart des cas, cela implique l’utilisation de chi�rement pour les données
stockées, a�n d’assurer leur con�dentialité, mais aussi l’utilisation de mécanismes cryptographiques
— authenti�cation des utilisateurs, algorithmes d’intégrité — empêchant la modi�cation non détectée
de données. Il est important de mentionner qu’avec ces réglementations, l’externalisation du stockage
d’informations médicales ou bancaires sans avoir recours à des protocoles cryptographiques de
contrôle d’accès est rendu simplement illégal, et empêche beaucoup de fournisseurs de services sur
le Cloud d’avoir accès à des parts de marché importantes.

Les nouvelles contraintes législatives ne sont pas les seules raisons motivant le développement de
bases de données chi�rées. En e�et, à la suite des révélations de Snowden de 2013 portant sur le
programme d’interceptions électroniques de la National Security Agency des Etats-Unis d’Amérique
— aidée en cela d’agences britanniques, australiennes ou allemandes — beaucoup d’utilisateurs de
services sur le Cloud, et plus généralement des utilisateurs d’internet, aussi bien des individus
que des entreprises, ont été convaincus de l’importance de chi�rer leurs communications et leurs
données a�n de protéger leur vie privée ou leurs activités professionnelles. En particulier, nous
avons assisté à une perte de con�ance importante en les fournisseurs de services, car ils peuvent être
forcés — par un mandat — à révéler des clés de chi�rement protégeant les données qu’ils stockent.

Dans ce contexte, la protection des seules communications entre l’utilisateur et le fournisseur de
services n’est pas su�sante, car le fournisseur continuera à voir les données que le client a envoyées
en clair. Ainsi, les services modernes de messagerie instantanée tels que Signal ou WhatsApp mettent
en œuvre du chi�rement “de bout en bout” qui permet aux parties qui communiquent de s’assurer
qu’elles seules peuvent lire les messages échangés.

Pour les bases de données, nous voudrions de même éviter que le serveur puisse inférer des
informations, que cela soit sur les données elles-mêmes ou sur les accès faits par le client. Il est aussi
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essentiel que les constructions de chi�rement de bases de données utilisent des outils cryptogra-
phiques courants et que leur sécurité puisse être prouvée, a�n que leurs utilisateurs aient con�ance
en de cette sécurité. Et, au delà d’être sûrs, ces systèmes doivent aussi être utilisables en pratique ;
c’est-à-dire qu’ils doivent être facile à utiliser, avec un déploiement simple et des fonctionnalités
similaires à leurs équivalents non sécurisés, que leurs performances doivent être compétitives avec
celles d’une base de données non chi�rée, et en�n qu’elles puissent passer à l’échelle et supporter de
très grandes bases (jusqu’à plusieurs téraoctets de données). Sans tout cela, les systèmes sécurisés
ne seront jamais choisis en faveur des systèmes non-chi�rés : Signal et WhatsApp ont beaucoup
plus de succès que PGP car ces deux applications sont très faciles d’utilisation, à l’opposé de la
messagerie électronique chi�rée avec PGP. Nous verrons dans cette thèse qu’arriver à concilier
sécurité et e�cacité est déjà di�cile pour des fonctionnalités simples (et dans certains cas même
impossible).

En particulier, nous allons nous concentrer sur le chi�rement de bases de données supportant des
requêtes de recherche portant sur un seul mot-clé, appelé dans la littérature anglophone “searchable
encryption” (chi�rement recherchable).

Problématique du chi�rement des bases de données

A�n de pouvoir traiter correctement les algorithmes de recherche sur des bases de données chi�rées,
il nous faut introduire une dé�nition de sécurité permettant de formellement quanti�er leur sécurité,
c’est-à-dire la con�dentialité des données et des requêtes. Malheureusement, nous verrons qu’il
est impossible de construire un schéma qui soit à la fois parfaitement sûr — cachant toutes les
informations à propos des données et des requêtes, à l’exception peut-être de la taille de la base et
du nombre de résultats — et e�cace. Des dé�nitions de sécurité prenant en compte la possibilité
d’une fuite d’information ont donc été conçues. Elles sont paramétrées par une fonction de fuite
qui justement modélise ce que le serveur peut apprendre : lorsque les dé�nitions de sécurité ainsi
paramétrées sont satisfaites, le serveur ne peut pas apprendre plus d’information que ce que lui
révèle la fonction de fuite.

Ainsi, l’enjeu est de réduire le plus possible les fuites éventuelles tout en o�rant les performances
les meilleures possibles et des fonctionnalités avancées. Nous verrons dans les chapitres 3 et 4 que,
malheureusement, il faudra faire un compromis, parfois important, entre sécurité et performance et
que la sécurité a un coût incompressible : il n’est pas possible de construire des bases de données
chi�rées avec un niveau de sécurité acceptable et dont les performances, même asymptotiques, sont
comparables avec celles d’une base non chi�rée. En e�et, certaines fuites rendent les constructions
(très) facilement attaquable et éviter ces fuites nécessite une certaine complexité du schéma de
chi�rement.

Les travaux de cette thèse visent à mieux appréhender les compromis entre sécurité et performance,
à en trouver des optima, à comprendre ce qu’implique la fuite de certaines informations et plus
généralement à trouver une solution sûre et utilisable au problème des bases de données chi�rées
supportant des requêtes de recherche. Ils sont décrits plus en détail dans la section suivante.

Travaux sur les algorithmes de recherche sur bases de données
chi�rées

Je présente ici rapidement les travaux portant sur les bases de données chi�rées e�ectués durant
mon doctorat. Ils seront développés in extenso dans la suite de la thèse.
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Con�dentialité persistante des algorithmes de recherche sur bases de données
chi�rées

La possibilité de modi�er une base de données chi�rée est une fonctionnalité essentielle pour
rendre utilisable de telles constructions : les bases de données statiques ne recouvrent qu’une faible
partie des cas d’emploi de bases de données. Malheureusement, comme c’est souvent le cas en
cryptographie, ajouter de nouvelles fonctionnalités entraîne l’arrivée de nouvelles vulnérabilités et
surtout de nouveaux moyens d’attaques. En e�et, il est compliqué pour un adversaire d’in�uencer
a priori l’ensemble des données à chi�rer d’une base de données statique, alors que dans le cas
de bases dynamiques, il peut pousser l’utilisateur à insérer des documents qui peuvent l’aider à
récupérer des information sur la base elle-même ou sur des requêtes, passées ou futures.

Ainsi, des attaques par injection de �chier ont été mises au point et permettent de casser la
con�dentialité des requêtes de recherche — c’est-à-dire de retrouver quel mot clé a été utilisé pour la
recherche. Il existe notamment des versions adaptatives de ces attaques, qui permettent de retrouver
le mot clé d’une requête passée avec une très grande e�cacité. Ces attaques adaptatives utilisent le
fait que, lors de l’insertion d’un nouveau document dans la base de donnée, le serveur peut apprendre
si ce nouveau document correspond à une requête précédente. Grâce à cette information, l’attaquant
peut e�ectuer une variante d’une recherche dichotomique et retrouver le mot-clé de la recherche
ciblée.

Il est donc essentiel que les schémas de chi�rement de base de données dynamiques ne révèlent
pas cette information. On dit alors qu’ils satisfont la propriété de con�dentialité persistante (forward
privacy en Anglais).

Avant mon travail, la seule construction existante dans la littérature satisfaisant cette propriété
avait été développée par Stefanov, Shi et Papamanthou [SPS14], qui avaient à cette occasion infor-
mellement introduit ce concept de con�dentialité persistante. Cependant cette construction, bien
qu’élégante, est complexe, ine�cace et n’est pas utilisable en pratique pour de grandes bases de
données (en particulier pour des questions de bande passante nécessaire aux mises à jour).

Dans [Bos16], j’ai formalisé la propriété de con�dentialité persistante en donnant une dé�nition de
sécurité claire, puis ai proposé une première construction d’algorithme satisfaisant celle-ci, Σoφoς ,
très simple, asymptotiquement optimale en terme d’e�cacité calculatoire et basée sur un objet
cryptographique bien connu, les permutations à trappe. J’ai de plus démontré son aspect pratique
en proposant une implémentation.

Malheureusement, l’utilisation de permutations à trappe, et donc de cryptographie asymétrique,
rend Σoφoς en pratique moins e�cace que certaines autres constructions qui ne sont pas con�den-
tielles de manière persistante. Avec Brice Minaud et Olga Ohrimenko, nous avons résolu ce problème
dans [BMO17] en remplaçant la permutation par un arbre de fonctions pseudo-aléatoire. Si notre
schéma, Diana, est en théorie moins e�cace que Σoφoς , il le surpasse en pratique car les opérations
de cryptographie symétrique nécessaires à Diana sont beaucoup plus rapides que les opérations
asymétriques nécessaires à Σoφoς . In �ne, Diana est aussi e�cace que des schémas n’étant pas
con�dentiels de façon persistante.

Un point à souligner est que Diana comme Σoφoς nécessitent de faire stocker des éléments par
l’utilisateur (un compteur par mot-clé présent dans la base). Je montre dans cette thèse que cela est
inévitable si on s’interdit d’augmenter sensiblement la complexité calculatoire du schéma : il y a
une borne inférieure sur la complexité calculatoire du protocole de mise à jour des constructions à
con�dentialité persistante.

Ces idées sont approfondies dans le Chapitre 4.
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Con�dentialité future des algorithmes de recherche sur bases de données
chi�rées

Ainsi, avec la con�dentialité persistante, nous pouvons nous assurer que les modi�cations de la base
de données ne peuvent pas être reliées à des recherches précédentes. Une autre notion naturelle à
étudier est celle de la con�dentialité future du système de chi�rement : les requêtes de recherche ne
devraient pas faire fuiter de l’information sur des entrées et des résultats supprimés. La con�dentialité
future est ainsi fortement liée au problème de la suppression sécurisée de données : nous ne voulons
pas que le serveur puisse recouvrer des informations supprimées.

Dans les constructions existantes, les suppressions étaient gérées en utilisant une liste de révoca-
tion : les documents étaient marqués comme supprimés et le serveur éliminait ces documents de la
liste de résultats. En particulier, le serveur avait encore accès aux informations supprimées, alors
que, paradoxalement, le propriétaire des données, l’utilisateur, ne l’avait plus.

La con�dentialité future avait été introduite de façon très informelle par Stefanov, Shi et Pa-
pamanthou dans [SPS14], en même temps donc que la con�dentialité persistante, mais est restée
grandement négligée jusqu’à notre travail avec Brice Minaud et Olga Ohrimenko [BMO17]. Dans ce
papier, nous formulons une dé�nition formelle de la con�dentialité future, avec plusieurs variantes,
et nous construisons quatre schémas de chi�rement de bases de données dynamiques, Fides, Moneta,
Dianadel et Janus qui satisfont ces dé�nitions avec di�érents compromis d’e�cacité. Ce sont les
premières constructions avec con�dentialité future (et persistante).

Certaines de ces constructions utilisent des outils cryptographiques permettant un contrôle d’ac-
cès �n aux données chi�rées, tels que le chi�rement et les fonctions pseudo-aléatoire poinçonnables.
Ils permettent en e�et d’empêcher le déchi�rement de certains messages ou l’évaluation de fonc-
tions sur certaines entrées. Nos constructions utilisent notamment ces primitives en empêchant le
déchi�rement des entrées de la base de données qui ont été supprimées.

En�n, nous avons aussi e�ectué une évaluation pratique d’une de nos constructions la plus
innovante, Janus, démontrant par là même que, malgré son intérêt théorique, il ne s’agit pas d’une
construction pouvant passer à l’échelle.

Les dé�nitions, constructions et résultats sont reproduits dans le Chapitre 5.

Algorithmes véri�ables de recherche

Précédemment, nous avons supposé que le serveur était “honnête mais curieux”, c’est-à-dire qu’il
essayait de casser la con�dentialité du contenu de la base de donnée ou des termes de recherche,
mais qu’il respectait toujours le protocole de recherche tel que prescrit. Mais le serveur pourrait
être “malicieux”, tricher et faire en sorte que l’utilisateur ne reçoive qu’une partie des résultats de
recherche, ou bien ajouter de faux résultats.

Pour lutter contre ce type d’attaque, l’utilisateur se doit donc de mettre en place des mécanismes de
véri�cation des résultats de requêtes. Dans [BFP16], avec Pierre-Alain Fouque et David Pointcheval,
nous étudions ces mécanismes.

Dans une première partie, nous démontrons que la véri�cation des résultats a un coût inhérent :
il existe à nouveau une borne inférieure sur la complexité calculatoire des algorithmes de recherche
sûrs contre des adversaires malicieux. Le temps d’exécution de l’algorithme de recherche ou de
l’algorithme de mise à jour doivent croître logarithmiquement en le nombre de mots-clés.

Ensuite, nous proposons une solution générique à ce problème, ainsi que deux instanciations.
La première se base sur une structure de donnée de dictionnaire véri�able basée sur des arbres de
Merkle, la seconde utilise des accumulateurs cryptographiques.
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En�n, nous corrigeons un point de [SPS14] qui décrivait comment rendre la construction de
ce papier véri�able et sûre contre les adversaires malicieux. En particulier, prouver la sécurité du
schéma de [SPS14] dans le modèle proposé par cet article s’avère assez délicat.

Le Chapitre 6 décrit ces résultats en détail et explique aussi comment rendre Σoφoς , Diana et
Janus véri�ables.

Attaques par abus de fuite

Ma dernière contribution porte sur les attaques par abus de fuite et leur interprétation. Une attaque
par abus de fuite utilise uniquement la fonction de fuite pour casser la con�dentialité du système,
et non une éventuelle faille dans sa construction. Ainsi, ce sont des attaques très générales, qui
peuvent avoir une grande portée, puisqu’elles visent des constructions di�érentes pourvu qu’elles
aient la même fonction de fuite.

Or, autoriser à fuiter des informations est essentiel pour que nos algorithmes aient une e�cacité
raisonnable. Ainsi, bien comprendre la portée des information révélées au serveur est essentiel pour
estimer la sécurité d’un système de chi�rement de bases de données. Il se pourrait en e�et que ces
informations soient su�santes pour rendre ce système non sûr.

Ainsi, supposons que le serveur ait eu connaissance de la base de données en clair (par exemple, par
ce qu’elle est publique et que l’utilisateur ne veut protéger que les requêtes). Il est très probable que,
pour un certain nombre de mots-clés, le nombre de documents retournés par une recherche sur ce
mot détermine uniquement de dernier. Le serveur peut alors calculer une table faisant correspondre
ces mots-clés et le nombre de résultats, permettant d’identi�er facilement le terme d’une requête
uniquement à partir du nombre de résultats de cette requête.

Il est étonnant de voir que, d’une part, nous avons des constructions dont la sécurité est démontrée
dans un modèle éprouvé, et que, d’autre part, il soit relativement aisé de mettre au point des
attaques contre ces constructions. Dans [BF17], avec Pierre-Alain Fouque, nous avons tenté de mieux
comprendre ce paradoxe. Nous montrons formellement qu’en fait, ces attaques sortent du modèle
de sécurité dans lequel ces systèmes sont prouvés sûrs.

Pour résoudre ce problème, nous proposons de nouvelles dé�nitions de sécurité capturant ces
attaques par abus de fuite. De plus, nous présentons une méthode permettant d’évaluer la sécurité
des constructions existantes vis-à-vis de ces nouvelles dé�nitions. En particulier, nous utilisons cette
méthode pour construire des algorithmes de chi�rement de base de données que l’on peut montrer
sûrs contre ce type d’attaques et nous l’appliquons au cas de l’attaque par fréquence décrite plus
haut.

Cette étude est présentée dans le Chapitre 7.

Autres travaux

Au cours de ces années de doctorat, j’ai publié deux autres papiers sur des sujets di�érents du
chi�rement de bases de données. Le premier, issu d’un travail e�ectué au Massachusetts Institute
of Technology en �n de Master, co-écrit avec Raluca Ada Popa, Stephen Tu et Sha� Goldwasser,
porte sur la classi�cation automatique de données chi�rées à l’aide d’un algorithme d’apprentissage
automatique. Le second, en collaboration avec Olivier Sanders, porte sur une attaque sur un mode
de chi�rement authenti�é appelé OTR.
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Classi�cation de données chi�rés par un algorithme d’apprentissage [BPTG15]

L’apprentissage automatique (machine learning en Anglais) est utilisé aujourd’hui dans de nombreux
domaines, tels que la médecine, la détection de pourriels, la reconnaissance faciale ou les prédictions
�nancières. Notamment, les algorithmes d’apprentissage et de classi�cation travaillent sur des
données hautement sensibles et il est important de garder con�dentiel ces données.

Considérons la con�guration classique de l’apprentissage supervisé : dans un premier temps, la
phase d’apprentissage, l’algorithme d’apprentissage construit un modèle à partir de données déjà
étiquetées et classi�ées, puis, dans un second temps, l’algorithme de classi�cation utilise ce modèle
pour prédire, à l’aide du modèle, une prédiction pour l’étiquette d’un élément pas encore classi�é. Il
est ainsi important qu’à la fois le modèle et les données à classi�er restent protégées : un potentiel
client d’une banque ne désire pas nécessairement donner sa situation bancaire, un hôpital ne peut
pas révéler de données sur ses patients, quand bien même elles ne seraient qu’agrégées.

Idéalement, dans le cas d’un hôpital o�rant des services de pré-diagnostic à ses patients, on
souhaiterait que les parties exécutent un protocole où le patient n’apprend que le résultat de ce
diagnostique (et rien d’autre sur le modèle de prédiction construit par l’hôpital) et que l’hôpital
n’apprenne rien sur les antécédents médicaux du patient.

Ce travail cherche à résoudre concrètement ce problème et propose plusieurs outils permettant
de construire des protocoles de classi�cation préservant le modèle et les données sur lesquels il est
appliqué. Pour cela, nous avons identi�é un certain nombre de “briques” utilisées fréquemment dans
les algorithmes de classi�cation et nous avons construit des algorithmes permettant de les utiliser
de manière sûre, sans faire fuir d’information. Parmi elles, on peut trouver le calcul d’un produit
scalaire, la comparaison de deux valeurs, le calcul d’un maximum, . . .

Dans un second temps, nous composons ces briques de base pour construire des protocoles de
classi�cation sûrs, couvrant un nombre important d’algorithmes d’apprentissage automatique. Ainsi,
nous présentons des protocoles pour des classi�eurs linéaires, pour des classi�eurs de Bayes naïfs ou
encore pour des arbres de décision. La sécurité de ces protocoles repose sur une preuve de sécurité.

En�n, j’ai implémenté ces briques et ces classi�eurs. Nous avons donc pu montrer que nos
constructions sont e�caces, prenant quelques millisecondes à quelques secondes pour classi�er des
données médicales.

Attaque sur le mode de chi�rement authenti�é OTR [BS16]

La sécurité des communications concerne non seulement la con�dentialité des données échangées à
travers le canal, mais aussi leur intégrité. Des solutions e�caces existent pour ces deux propriétés
prises séparément et peuvent être combinées. Aussi, la combinaison d’un algorithme pour la con�-
dentialité et d’un algorithme pour l’intégrité est souvent sous-optimal par rapport à l’utilisation
d’un mécanisme unique.

Toutefois, le développement d’un algorithme de chi�rement authenti�é permettant de résoudre
ce problème de manière e�cace est devenu un sujet majeur en cryptographie et donné naissance à
la compétition CAESAR.1 Dans le cadre de cette compétition, de nombreux algorithmes nouveaux
ont été proposés et parmi eux, OTR (pour O�set Two Rounds) de Minematsu [Min14].

Le schéma OTR utilise sur un algorithme de chi�rement par blocs adaptable (en Anglais, Tweakable
Bloc Cipher ou TBC), une primitive très puissante qui consiste en un algorithme de chi�rement par
bloc classique auquel on rajoute un paramètre publique supplémentaire (le tweak), qui peut être
contrôlé par l’attaquant. Plus précisément, OTR chi�re des paires de blocs de messages en appliquant

1Competition for Authenticated Encryption : Security, Applicability, and Robustness
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deux tours d’un réseau de Feistel dont les fonctions internes sont deux appels à l’algorithme de
chi�rement par bloc adaptable avec deux paramètres di�érents.

Pour instancier l’algorithme de chi�rement, une des méthodes utilisées — et notamment par OTR
— est appelée XEX∗ (pour Xor-Encrypt-Xor) : un masque ∆ est dérivé du paramètre et est xoré en
entrée (et éventuellement en sortie) du bloc de chi�rement. Plus précisément, les masques sont des
chaînes de n bits, représentant un élément du corps F2n = F2[X]/P (X) où P est un polynôme
primitif de degré n sur F2, et sont de la forme

(
Xi + a ·X + b

)
δ ou

(
Xi+1 +Xi + a ·X + b

)
δ

où i est le numéro du bloc de message à chi�rer et avec a, b ∈ {0, 1} et δ ∈ F2[X]/P (X) généré
(pseudo-)aléatoirement. Un élément essentiel pour la sécurité de cet algorithme est le fait qu’il n’y
ait pas de collision entre les masques.

Or il se trouve que rien n’empêche d’avoir des collisions entre les polynômes de la forme Xi +
a ·X + b ou Xi+1 +Xi + a ·X + b pour des faibles valeurs de i (correspondant donc à des petits
messages). Pour certaines valeurs de P utilisées communément, ces collisions sont même immédiates
à trouver. Par exemple, pour n = 64, on utilise souvent P (X) = X64 +X4 +X3 +X + 1, on a
une collision immédiate entre X64 et X4 +X3 +X + 1 dans F2[X]/P (X).

Dans ce papier, nous avons soulevé ce problème et montré que pour une grande partie des tailles
de bloc n ≤ 10 000, on peut trouver des collisions entre les polynômes immédiatement. Puis nous
nous sommes concentrés sur les tailles de bloc usuelles (n = 64 et n = 128). Si l’on peut trouver des
collisions immédiates pour n = 64 avec le polynôme primitif utilisé habituellement pour construire
F264 , ce n’est pas le cas pour n = 128 et P (X) = X128 + X7 + X2 + X + 1 utilisé en pratique
pour dé�nir F2128 . Nous avons donc étudié de manière plus approfondie ce cas et montré, par le
calcul, qu’il n’y avait pas de collision possible entre les polynômes utilisés pour la génération des
masques pour i < 245 (c’est-à-dire pour des tailles de message raisonnables). Nous émettons aussi
la conjecture, justi�ée par des expériences, que les collisions ne devraient pas arriver pour i < 260.

Bien que l’existence de telles collisions invalide la preuve de sécurité d’OTR, cela ne nous donne
pas une attaque sur l’algorithme de chi�rement. Dans une seconde partie de notre travail, nous
montrons donc comment ces collisions peuvent être utilisées pour casser la con�dentialité et/ou
l’intégrité des données chi�rées.

En�n, nous décrivons plusieurs méthodes possibles pour la construction des masques utilisées
dans l’algorithme de chi�rement par blocs adaptable évitant ces collisions. Nous insistons ainsi
sur le fait que notre travail ne remet pas en question la sécurité intrinsèque de l’algorithme OTR
vu en tant qu’algorithme utilisant un chi�rement par blocs adaptable en boîte noire, mais que
l’instanciation de ces derniers dans la version originale d’OTR devait être corrigée. Ainsi, suite à
notre attaque, l’auteur a modi�é la génération des masques dans la dernière version d’OTR soumise
à la compétition CAESAR.
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Introduction 1
S

earchable encryption aims at making e�cient a seemingly easy task: outsourcing the
storage of a database to an untrusted server, while keeping search features. With the
development of Cloud storage services, for both private individuals and businesses, e�ciency

of searchable encryption is crucial: ine�cient constructions would not be deployed at a large
scale because they would not be usable. The key problem with searchable encryption is that any
construction achieving ‘perfect security’ induces a computational or a communication overhead
that is unacceptable for the cloud providers or for the cloud users — at least with current techniques
and by today’s standards.

In this chapter, we will more precisely describe the motivations behind searchable encryption
and di�erent solutions which have been proposed in the past.

Contents

1.1 The Need for Encrypted Databases . . . . . . . . . . . . . . . . . . . . . . 4
1.2 History of Searchable Encryption . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Encrypted Databases from Generic Tools . . . . . . . . . . . . . . . . 5
1.2.2 Single-keyword Searchable Encryption . . . . . . . . . . . . . . . . . 8
1.2.3 Encrypted Databases Supporting Complex Queries . . . . . . . . . . . 11

1.3 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Σoφoς : Forward Secure Searchable Encryption . . . . . . . . . . . . . 12
1.3.2 Forward and Backward Private Searchable Encryption from Constrained

Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Veri�able Dynamic Symmetric Searchable Encryption: Optimality and

Forward Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Thwarting Leakage Abuse Attacks against Searchable Encryption – A

Formal Approach and Applications to Database Padding . . . . . . . . . 13
1.3.5 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 14



4 Chapter 1 Introduction

1.1 The Need for Encrypted Databases

For the last decades, a considerable amount of data has been progressively outsourced from the data
owners to external service providers, starting with emails, and extending to banking information,
consumer information, or private pictures. More and more businesses decide to use collaborative
platforms in their day-to-day work. Many companies also do not want to manage local infrastructures
to store the ever growing amount of information they deal with. Outsourced infrastructure providers,
such as Google, Amazon, Apple, Microsoft, IBM, Dropbox, and many others, o�er a wide range
of services — covering email, �le hosting, collaborative documents edition, backups, and more —
generically called ‘the Cloud’. These services are very appealing to private companies, to individuals,
and even to the public sector, as they allow their users to ‘focus on the data, rather than on
the infrastructure’, at a very competitive pricing1, and with good uptime and safety guarantees.
Prospective reports state that, by 2020, nearly 80 % of the Small & Medium Businesses (SMBs) in
the United States of America will use Cloud services, while ‘only’ 43 % did in 2015, that, in 2018,
the European SMB Cloud service market will reach €30.1B [Col15], and that Cloud computing is
expected to grow by 19 % by 2020 [GM16].

Note that Cloud services are not limited to data storage or data management, and cover the
outsourcing of computations: a user who cannot a�ord a large computer can buy some computation
time on Amazon Elastic Compute Cloud (EC2) or Google Compute Engine, and even very repetitive
micro-tasks involving human intelligence can be crowdsourced using Amazon Mechanical Turk.

During the period, data protection has become a very important question for many companies
dealing with massive amounts of sensitive data. The �rst reason for that is the development of
dedicated legislation obliging companies to secure their data, in particular personal data. Example of
such regulations are the Title II of the Health Insurance Portability and Accountability Act (HIPPA)
of 1996 [USA96] in the healthcare sector or the Sarbanes–Oxley (SOX) Act [USA02] in the �nancial
sector in the United States of America, and, in the European Union, the General Data Protection
Regulation (GDPR) [EU16] — replacing the Data Protection Directive [EU95]. These laws intend to
prevent any disclosure or access, either accidental, unlawful or unauthorized, to sensitive data. In
most cases, this implies the use of encryption for data at rest, to ensure their con�dentiality, but
also the use of cryptographic techniques — user authentication, data at rest integrity — to prevent
(undetected) data tampering. Also, with these regulations, outsourcing the storage of �nancial data
or the processing of healthcare data to the Cloud without relying on cryptographic access control
mechanisms is simply illegal, and many Cloud service providers are hence denied the access to huge
market shares.

New regulation is not the only origin of the development of encrypted databases. After the 2013
revelations by Snowden [Gre14] of the electronic interception program of the United States’ National
Security Agency (NSA) — helped by and in association with other, non American, intelligence
agencies such as the GCHQ,2 the ASD,3 or the BND4 — many Cloud users, and more generally
internet users, both companies and individuals, got convinced of the necessity of encrypting their
communications and their data in order to protect their privacy and/or their business. In particular,
service providers are no longer trusted, as they can get subpoenaed to reveal encryption keys: the
provider becomes the ‘adversary’, cryptographically speaking.

1At the time these lines are written (2017).
2Government Communications Headquarters (United Kingdom).
3Australian’s Signals Directorate (Australia).
4Bundesnachrichtendienst (Germany).
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In this setting, only protecting the communications between the user and the server, say using
TLS5 to establish a secure channel, is not enough as the server will still see the data the client sent
in cleartext. Indeed, modern instant messaging services use end-to-end-encrypted (E2EE) protocols
which ensure that only the communicating parties can read the messages they exchange. The
Signal protocol [MP16; CCD+17] is an example of such protocols, and has seen its use massively
generalized since its adoption by the WhatsApp instant messaging application [KA16].

For databases, we similarly want a system preventing the server to infer information, either about
the outsourced dataset, or about the accesses of the client, as both can be very sensitive. It is very
important that the security of the scheme can be proven using standard cryptographic assumptions,
as its users must be con�dent in its claimed security. And, in addition to being secure, we also want
this system to be usable in practice. This means that it has to be easy to use (i.e. easy to deploy
and supporting a set of features similar to the one of its insecure counterpart), that its performance
must be competitive with an unencrypted database, and that it has to be scalable and support large
datasets (up to terabytes of data). Otherwise, the secure system will never be chosen in preference
to non-encrypted systems: Signal and WhatsApp are far more successful than PGP because these
mobile applications are trivial to use, the opposite of PGP-encrypted emails.

We will see in this thesis that achieving both security and e�ciency for simple functionalities
is already delicate, and sometimes just impossible. Namely, we will focus on encrypted databases
supporting single-keyword search — a.k.a. searchable encryption schemes.

1.2 History of Searchable Encryption

In the following paragraphs, we give an overview of various proposed constructions for encrypted
databases, ranging from “perfectly” secure but inherently ine�cient constructions, to more ad hoc
schemes supporting a wide type of queries.

1.2.1 Encrypted Databases from Generic Tools

As for many secure functionalities, encrypted databases can be constructed from generic crypto-
graphic tools. These tools are very powerful and solve our problem perfectly in terms of security.
Yet, we will see that, in some sense, they are too powerful: perfect security comes at an una�ordable
cost, either in terms of computation or in terms of communication.

Private information retrieval (PIR). The �rst tool that one can think of when looking at
encrypted databases is private information retrieval. A PIR protocol allows a user to retrieve an
element of a database from a server, without the server learning which element was accessed. Note
that, in the PIR setting, the database is public (and hence known by the server).

PIR has been introduced by Chor et al. in [CGKS95], and many di�erent �avors have been studied
since then.

Firstly, one can consider information theoretic PIR: the security of these protocols does not rely
on any hardness assumption — they achieve perfect security. However, in this case, it is necessary
to distribute the database to several non-colluding servers if the user does not want to download
the entire database at every query [CGKS98, Section 5]. In practice, this would require to rely on
di�erent service providers, and still, the queries would not be kept secret if all the providers are
simultaneously attacked or subpoenaed.

5Transport Layer Security. See [KPW13] for more information on the security o�ered by TLS.
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Another interesting candidate is computationally-Private Information Retrieval [KO97] (cPIR). In
this case, the security relies on cryptographic assumptions, allowing for single-database schemes
whose bandwidth overhead is sublinear in the size of the data set. However these schemes trade a
low bandwidth for a high computational complexity: all the existing schemes perform Ω(n) public
key operations in order to answer to a query on a database of size n— with the exception of Lipmaa’s
construction [Lip10] which only needs O(n/ log n) operations. This prevents PIR from being able
to scale to very large data sets, even when the implementation is very e�cient, like in the scheme
of Aguilar et al. [ABFK14]: with this implementation, the query latency (without accounting for the
network) is of the order of tens of seconds for a database with 100 000 documents.

Finally, symmetric PIR [GIKM98] (also called Oblivious Transfer [NP99]), where the sender of the
query cannot learn more information than what he asked for, might be interesting for multi-user
encrypted databases with �ne-grained access control. However, symmetric PIR su�ers from the
same ine�ciencies as the non-symmetric constructions, and cannot be reasonably used.

We refer the curious reader to the surveys by Gasarch [Gas04] and by Ostrovsky and Skeith [OS07]
for more information about PIR.

Fully homomorphic encryption (FHE). The idea of homomorphic encryption is that given
ciphertexts c1 and c2 encrypting respectively m1 and m2, anyone can compute the encryption of
f(m1,m2) for a given function f , without using the secret key. El Gamal [ElG84] and (textbook)
RSA [RSA78] encryption schemes are examples of multiplicatively homomorphic schemes (f is
the multiplication modulo a �xed integer N ), and Goldwasser-Micali [GM84] and Paillier [Pai99]
cryptosystems are additively homomorphic (f is the addition modulo 2 and N , respectively). When
any computable function f can be evaluated homomorphically by an encryption scheme, we say
that it is fully homomorphic.

Homomorphic encryption was introduced by Rivest, Adleman and Dertouzos as ‘privacy ho-
momorphism’ [RAD78]. The �rst fully homomorphic encryption scheme has been designed by
Gentry [Gen09], and since then, a lot of work on this topic arose [DGHV10; BGV12; GSW13;
CGGI16], making FHE schemes better understood and more practical.

Fully homomorphic encryption has numerous applications, especially for Cloud services, starting
with the outsourcing of computation. Database outsourcing was actually the primary motivation
for homomorphic encryption in the introductory paper by Rivest, Adleman and Dertouzos.

With FHE, the database would be encrypted by the client, and given to the server. Then the client
would encrypt its query (or at least the query terms), and the server will evaluate the query on
the encrypted database to compute the result, that will be sent back to the client for decryption.
Yet this approach cannot be asymptotically e�cient: to be secure, the FHE evaluation procedure
has to depend on every bit of the database. Otherwise, the adversary would be able to learn some
information about the dataset or about the query, and possibly to break the security of the encryption
scheme, by observing the running time of the query. Accordingly, the computational complexity of
the query is linear in the size of the dataset, while, on non encrypted systems, the running time of
the query is linear in the number of results (every result has to be sent back to the client) and in the
size of the query (all the query has to be processed).

To overcome this limitation, Boneh et al. [BGH+13] proposed an homomorphic-encryption-based
scheme, in which the database server is split in two non-colluding parties, the ‘server’ and the
‘proxy’, supporting complex queries. Yet, similarly to symmetric PIR, this construction is meant to
protect the privacy of the queries, and the con�dentiality of the database for non-returned results,
and does not really �t our needs for secure database outsourcing.
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Multiparty computation (MPC). The goal of secure multiparty computation is to securely
compute a function whose inputs are distributed among several parties. In particular, the parties
want to keep their input private. Also, one might want to ensure the correctness of the result when
the parties are malicious and do not follow the protocol.

Two-party computation (2PC) has been introduced by Yao [Yao82; Yao86], with the famous Mil-
lionaires problem — namely securely comparing two integers — and later extended to the multiparty
case by Goldreich, Micali and Wigderson [GMW87]. In particular, any function (represented as a
circuit) can be securely evaluated using MPC. To do this, Goldreich et al. use two very important
and interesting cryptographic tools: oblivious transfer (OT) — already mentioned in a previous
paragraph — and garbled circuits.

The idea of garbled circuit, originating from lectures by Yao, is to ‘encrypt’ the truth table of each
gate of the circuit computing the function. Then, a party can use these encoded gates to evaluate the
circuit using some garbled inputs provided by the garbling party. Many improvements have been
developed over the past years to improve the e�ciency of garbled circuits [BMR90; KS08; FGK17],
making them practical for real-world applications [GLNP15; ABF+17].

Yet, garbled circuits, and MPC in general, are not really well suited to encrypted search applications.
Namely, in searchable encryption, only one party has the secret inputs and the other is here to help
it with the computations, while, in MPC applications, there are multiple parties, each with its own
private input. Also, garbled circuits can only be used once6 and directly using garbled circuits to
answer search queries would require a mechanism to re-garble the database, in a private way, at
every query. Finally, as for FHE, the circuit representation of the query function would induce a
large overhead, linear in the size of the database.

Oblivious RAM (ORAM) and oblivious data structures. Another way to construct searchable
encryption is to implement a regular search engine on top of (secure) outsourced storage: every
storage access (i.e. every read/write operation) needed when the client runs the search engine is
processed to ensure it leaks no information.

Yet this approach is not completely straightforward: the way the search engine processes queries
might depend on the query itself and hence could reveal some crucial, side-channel information
about the query. Also, the sequence of accessed locations in the outsourced memory should not
reveal any information: the access pattern must be concealed.

The goal of Oblivious RAM is exactly to hide this data access pattern from the server storing
this data as a sequence of blocks. Said otherwise, from the server’s perspective, the access pattern
of two sequences of read/write operations of the same length are indistinguishable. ORAM has
been introduced by Goldreich and Ostrovsky in [GO96], in which the authors proposed a scheme
based on shu�ing and re-encrypting data blocks. Since then, the research has been very active
in this �eld, and many schemes were developed, which we could roughly classify in two families:
hierarchical/square root ORAM — similar to �rst constructions by Goldreich and Ostrovsky [GO96]
— and tree-based ORAM — with notably the Path ORAM construction by Stefanov et al. [SDS+13a].

Many variations of strict ORAM have been developed, such as multiple-server ORAM [SS13;
LO13a], or use of some server computational power [WS12; DDF+16; GMP16]. Note that assuming
some server computing power is very appealing, �rst because, in our encrypted database case, we
do suppose that the server can do some computation — even unencrypted datasets require some
work from the server — and then because this allows to ‘break’ the ORAM lower bound stated in the

6There has been some work on reusable garbled circuits (cf. [GKP+13]) but these constructions are absolutely not
practical.
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seminal work of Goldreich and Ostrovsky in [GO96]: this paper shows that an ORAM of N blocks
with constant client storage incurs a client-server bandwidth overhead of O(logN ), in the case of
server doing no computation (think of a disk or a RAM module). When the server is allowed to help
the client, this lower bound does not apply anymore to the bandwidth between the client and the
server, but between the server CPU and its local storage, which is much less of a problem in Cloud
scenarii, but still a limitation.

Yet, as explained above, using secure memory accesses does not prevent side-channel leakage
from the length of access pattern. The algorithms used to answer the queries must be designed
carefully to tackle this issue. Also, by carefully studying how the ORAM protocol and the query
algorithms interact, we can also improve on the e�ciency of the combined construction.

One way to proceed is to use Oblivious Data Structures (ODS) [WNL+14]: in this work, Wang
et al. use the Path ORAM construction in a very particular way, so as to limit the client-server
bandwidth overhead. Similarly, a variant of Path-ORAM combined with server-evaluated garbled
circuits — TWORAM — has been used to construct a searchable encryption scheme [GMP16]. Finally,
Garbled RAM [LO13b] is a technique based on ORAM to evaluate RAM programs on an untrusted
third party (i.e. with a constant number of client-server interactions), which can be applied to
searchable encryption but at a very high cost: the Garbled RAM compiler of Lu and Ostrovsky incurs
a computational overhead of poly(λ, logN ), where N is the size of the inputs. Finally, ORAM has
been adapted to improve the practical performance of secure computations (by reducing the ORAM
circuit size) [WHC+14], so as to allow fast access to randomly accessible memory within a garbled
circuit.

Note that all the ORAM-based constructions of searchable encryption will leak the number of
memory accesses they perform. Hence, they often leak the number of results of a search query, which
is not the case with FHE-based or PIR-based schemes. Yet, they will be a lot more e�cient as their
running time can depend on the number of results only, while all the FHE/PIR-based constructions
necessarily run in time linear in the size of the database.

Leakage is necessary. Despite being very powerful, all these generic techniques su�er from
inherent ine�ciencies: FHE and MPC are based on circuits, and ORAM-based constructions will be
subject to a lower bound on their e�ciency.

So, how to make searchable encryption e�cient, both in theory and in practice? How can these
lower bounds be overcome? The answer is that we have to trade security for e�ciency: some
information must leak to the server when he runs a query. Note that we already mentioned this
phenomenon: ORAM-based systems can be more e�cient than FHE-based constructions because
they can run in time depending on the number of results (as a RAM program), while, as FHE hides
everything about the outcome of the computation, its running time of an homomorphic evaluation
is always the running time of the worst case.

In Section 3.1, we will see how we can formally de�ne the leakage of searchable encryption
schemes, and in Section 3.2, we will describe the leakage of some commonly encountered schemes.
In particular, we will show that some basic leakages are necessary for any searchable encryption
scheme whose asymptotic performances are similar to the ones of its unencrypted counterpart, even
for schemes supporting very basic queries (single-keyword search).

1.2.2 Single-keyword Searchable Encryption

The �rst searchable encryption construction dates from 2000 and a paper of Song, Wagner and
Perrig [SWP00]. The authors construct a kind of stream cipher to encrypt documents, so that the
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ciphertext can be partially decrypted using keyword-derived tokens. To perform a search on a
keyword, the client sends the corresponding token and the server tries to decrypt the segments of
the ciphertext: if the decryption succeeds, it is a match. Unfortunately, used as this, this scheme is
quite ine�cient because a search requires work linear in the size of the database, and hence is not
scalable.

However, the paper [SWP00] is very important: it already sketches and/or underlines many
interesting points about searchable encryption. Firstly, it provides a provably secure construction,
in the sense that their scheme is a secure encryption scheme for the database: it is proven that the
document encryption function is a secure pseudo-random generator, and hence that the encrypted
documents leak no information by themselves. Then, it considers using an index to speed up the
search without compromising the security, and already notes the issues with indexes that subsequent
works tried to tackle: complexity of the update, necessity to pad the encrypted database to hide the
frequency of keyword. Also, the authors mention what will later be called leakage-abuse attacks,
i.e. the fact that the adversary might learn a lot of information about the database, beyond the
ones directly leaked by the queries, and describe ways to mitigate these attacks, and to counter
misbehaving adversaries trying to return incorrect query answers.

Goh [Goh03], and Chang and Mitzenmacher [CM05] speci�cally studied encrypted indexes, and
focused on security de�nitions (cf. Section 3.1). Goh’s scheme consists in storing a Bloom �lter per
document — a �lter which can be tested to check if a keyword belongs to this particular document.
The search complexity of the scheme is then linear in the number of documents, and, because the
size of the Bloom �lters is chosen so that they can contain every keyword, the size of the encrypted
database is D ·K where D is the number of documents and K the number of keywords, which
can be huge compared to the optimal size when the dataset is sparse (the documents contain only a
small subset of all the keywords).

Chang and Mitzenmacher’s scheme encrypts a bit matrix, in which the rows represent the
documents and the columns the keywords. A bit is set to 1 if the keyword of the corresponding
column appears in the document corresponding to the row. The matrix is then encrypted column
per column, so that, during a query, the client can give the decryption key corresponding to the
searched keyword. The server simply has to decrypt this column to �nd the matching documents.
This time, the search time of the scheme is linear in the total number of documents in the database
(which is sub-optimal) and, again, the size of the encrypted database is D ·K .

Modern security de�nitions were introduced by Curtmola et al. in [CGKO06]. They were the
�rst to formally introduce the notion of leakage in these de�nitions. Their security de�nition is
also the �rst one to consider the security of the encrypted database and the security of the search
tokens together, not separately. In particular, they showed that a two-part de�nition, separating
these two notions, is most likely to fail. All this allowed them to design an asymptotically e�cient
index-based scheme. This scheme, which is a kind of encrypted multi-map implemented using an
implicit linked-list, inspired or served as a basis of many of the later single (and multiple) keyword
SSE constructions (e.g. [CK10; KPR12; KO12; CJJ+13; PBP16; Bos16; KM17] and more).

An important challenge for the searchable encryption community has been the development of
dynamic schemes, i.e. schemes supporting modi�cations of the encrypted database via an update
mechanism. Until the work of Kamara, Papamanthou and Roeder [KPR12], there was no e�cient
dynamic searchable encryption scheme. By ‘e�cient’, we mean a scheme whose search complexity is
sublinear in the number of documents, whose encrypted database size is linear in the size of the plain
dataset, and whose update complexity is linear in the number of updated document/keyword pairs.
The scheme of Kamara et al. is based on the encrypted-linked-list-based multimap of [CGKO06]
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and performs insertions by (logically) enqueuing each new entry in the right list. E�cient deletions
are supported by encoding a dual representation of the index: also using linked lists, the client can
easily tell the server which tokens of the encrypted database correspond to a given document, and
hence tell him to remove them when needed.

Unfortunately, as we will see in Chapter 4, dynamism allows for new means of attack, and
regular dynamic index-based schemes, such as the ones in [KPR12; CJJ+14], are subject to dev-
astating adaptive attacks (cf. [ZKP16]). To thwart these attacks, forward-private schemes have
been constructed [SPS14; Bos16], i.e. schemes whose update protocol is oblivious and reveals no
information.

Also, for most dynamic schemes, a deletion only logically removes the entries, but the server is
still able to decrypt these deleted entries — and hence extract some supposedly erased information
— for any subsequent search request matching these. However, this problem can be �xed using
backward private constructions (cf. [BMO17]), as we will see in Chapter 5.

Many of the previously mentioned schemes are asymptotically optimal: the complexity of the
search protocol is linear in the number of results, the complexity of the update protocol is linear
in the number of updates, the storage overhead of encrypted database is constant. Unfortunately,
the performance of these schemes is still one order of magnitude behind that of an unencrypted
databases. The main explanation for this is the non-locality of the storage accesses of secure
searchable encryption schemes: these schemes perform many random memory accesses, while
unencrypted databases are able to re-organize their data so that memory accesses are sequential,
which are faster than random accesses by several orders of magnitude (cf. Section 3.3 for detailed
discussions and results about locality in searchable encryption). A way to overcome this problem is
to use a ‘legacy-compatible’ construction, i.e. a construction built on top of a regular, non-encrypted
database. The encryption scheme can be seen as a proxy transforming keywords in documents into
cryptographic tokens which are then placed in the database. Many commercial encrypted databases
(e.g. CipherCloud [Cip] or skyhigh [sky]) are built in this manner. These legacy-compatible schemes
use deterministic encryption, and hence are subject to attacks based on frequency-analysis [NKW15],
compromising the secrecy of the encrypted dataset. In practice, these constructions bring very little
security. Also note that it is possible to construct encrypted databases supporting more complex
queries than single-keyword search as legacy-compatible schemes — cf. next section.

Almost all of the constructions mentioned above are shown secure in a model where the adversary
has to follow the prescribed protocols. Yet, in real-world systems, it is also important — if not essential
— to ensure that the adversary does not cheat, and does not derive from the protocols, e.g. by returning
an incomplete set of results. There are many examples, in the applied cryptography literature, where
failing to properly achieve integrity leads to breaks in the con�dentiality of private data (cf. [Vau02;
BL16]).

For searchable encryption, this problem was �rst studied by Kurosawa and Ohtaki [KO12] in the
setting of static databases. They construct a scheme that is secure against malicious adversaries in
the Universal Composability (UC) model [Can01], a very strong and very powerful formalization
for cryptographic functionalities. Their idea is to use a message authentication code over the result
set for each keyword to ensure that the adversary has not tampered it. This can be done because
the result set for each keyword is pre-computed during the indexing phase necessary to build the
index-based encrypted database. Kurosawa and Ohtaki later extended their construction to dynamic
databases in [KO13].

In Chapter 6, we will study in more details the problem of searchable encryption secure against
malicious adversaries, a.k.a. veri�able searchable encryption, and in particular see that there is a
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tight lower bound on the e�ciency of these constructions (cf. [BFP16]).

1.2.3 Encrypted Databases Supporting Complex Queries

Although supporting single-keyword searches is a �rst step, it is not su�cient for all database
applications. To be usable, the query language of the encrypted database must extend to more
complex queries. Again, such features can be implemented using generic techniques, with no or
little leakage, but at huge computational or communication cost.

Solutions built on top of index-based searchable encryption have been developed to support
boolean queries, i.e. queries consisting of conjunctions, disjunctions, or negations of keywords
(e.g. “tiger AND (bengal OR siberian)” to retrieve only the pictures of Bengal or Siberian
tigers in a picture database). The �rst contributions of this kind have been concurrently authored
by Cash et al. [CJJ+13] — OXT — and by Pappas et al. [PKV+14]7 — Blind-Seer.

The OXT construction is particularly targeted towards conjunctive queries. It combines a single-
keyword scheme, used for the �rst term of the conjunction, an oblivious pseudorandom function
(OPRF), to securely compute tokens from the indices of the documents matching the �rst query
term and the other terms, and �nally, a set-membership data structure (e.g. a Bloom �lter), used to
test if a document/keyword pair, represented by an OPRF-computed token, belongs to the dataset.

Blind Seer is based on a completely di�erent design: the inverted index is encoded using a tree of
Bloom �lters, inspired from a construction of Goh [Goh03]. Each leaf corresponds to a document,
and the corresponding Bloom �lter contains all the records the document has. The rest of the tree
is based on the invariant that its Bloom �lter contains all the records contained by its children. In
this tree based construction, a search corresponds to a tree traversal based on Bloom �lter testing.
In this data structure, it is also quite easy to answer boolean queries by adapting the tree traversal
predicate. The security of the construction comes from the encryption of the Bloom �lters (using
pseudo-randomly generated one-time-pad) and the evaluation of the tree-traversal predicate with
Garbled circuits.

More recently, Kamara and Moataz [KM17] presented a scheme supporting monotone boolean
queries, and in particular disjunctive queries, with an optimal search complexity.

It is interesting to note that, from boolean queries, researchers have been able to build schemes
supporting range [PKV+14], wildcards, substrings or phrases [FJK+15] queries. Also, some schemes
address the problem of fuzzy encrypted search, i.e. search on approximate keywords, tolerating
typos and enabling biometrics applications — cf. [BC15].

Yet, these constructions are still far from SQL-like databases, either in terms of queries’ expressive-
ness or in terms of performance. At the same time, new legacy-compatible constructions appeared
to bridge this gap. The most famous one is probably CryptDB [PRZB11], supporting aggregate,
range and equality queries. To achieve these features, CryptDB encrypts the columns of the database
using homomorphic encryption, deterministic encryption, or order-preserving encryption.

Order-preserving encryption (OPE) is a (possibly deterministic) encryption scheme whose en-
cryption function preserves the order of the plaintexts. It is easy to see that OPE can be used as a
component of a legacy-compatible encrypted database supporting range-queries. OPE was formally
introduced by Boldyreva et al. [BCLO09], and, in association with its relaxation order-revealing
encryption (ORE) — in ORE the numerical order of plaintext is not preserved, but ciphertext can be
e�ciently compared using a public algorithm — has been an active topic [PLZ13; Ker15; CLWW16;
RACY16].

7Both of these constructions are results of a DARPA Project.
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However, because deterministic encryption and OPE/ORE are far more leaky than regular, seman-
tically secure encryption, these legacy-compatible constructions are often easy to break. Recently,
attacks have been presented breaking CryptDB [NKW15], and the OPE scheme of ARX [LMP17]
(CryptDB’s successor [PBP16]). Some non-legacy-compatible constructions have been designed
(e.g. [KM16]), o�ering an security improvement over the previous schemes. Unfortunately, the
leakage description of these is quite involved and has not really been (crypt)analyzed. The curious
reader should consider the excellent Systematization of Knowledge paper on encrypted database by
Fuller et al. [FVY+17].

Another interesting feature of encrypted search, especially when the number of results of a query
is large, is the ranking of results. Once again, the client could do the ranking by himself, based
on some relevance information stored in the database. But, when the result set is huge, and the
client only wants the �rst 10 results (think about a web search engine), this is not reasonable. To
solve this problem, Baldimtsi and Ohrimenko [BO15], and Meng et al. [MZK15] gave constructions,
respectively sorting the results and returning the top-k results of a boolean search query. These
schemes are built in a model assuming the existence of two non-colluding cloud providers. The �rst
one stores the encrypted database and executes the query, while the second ranks or selects the top
answers using some client-issued private keys.

Besides searchable encryption, some works focused on generalizations of encrypted databases to
other representations of data. Structured encryption was introduced in [CK10] as a generalization
of searchable encryption to any data structure. In this paper, Chase and Kamara gave constructions
for neighbor and adjacency queries on graph-structured data, as well as lookup queries on matrix-
structured data. Similarly, encrypted data structures able to answer approximate shortest distance
queries in a graph have been developed by Meng et al. [MKNK15].

1.3 Contributions of this Thesis

This thesis studies single-keyword searchable encryption. It brings in at once new theoretical results,
new security considerations, new constructions, and new practical analysis of searchable encryption.
These results mainly come from four papers, that we will quickly summarize, and a few others are
original.

1.3.1 Σoφoς : Forward Secure Searchable Encryption [Bos16]

Recent work [ZKP16] showed that dynamic schemes — in which the data is e�ciently updatable —
leaking some information on updated keywords are subject to devastating adaptive attacks breaking
the privacy of the queries. The only way to thwart this attack is to design forward private schemes
whose update procedure does not leak if a newly inserted element matches previous search queries.

The [Bos16] paper formalized the notion of forward privacy and proposed Σoφoς as a forward
private SSE scheme with performance similar to existing less secure schemes, and that is conceptually
simpler (and also more e�cient) than previous forward private constructions. In particular, it only
relies on trapdoor permutations and does not use an ORAM-like construction. We also explain why
Σoφoς is an optimal point of the security/performance tradeo� for dynamic SSE (supporting only
insertions, but not deletions). Finally, an implementation and evaluation results demonstrated its
practical e�ciency.

The material of this paper appears in Chapter 4.
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1.3.2 Forward and Backward Private Searchable Encryption from Constrained
Cryptographic Primitives [BMO17]

With the previous paper, we saw why it is desirable that updates in searchable encryption schemes
do not reveal any information a priori about the modi�cations they carry out. It would also be nice
(and better) if deleted results remained inaccessible to the server a posteriori. This second property,
called backward privacy, had been overlooked in previous work.

With Brice Minaud and Olga Ohrimenko, we studied for the �rst time the notion of backward
privacy for searchable encryption. After giving formal de�nitions for di�erent �avors of backward
privacy, we presented several schemes achieving both forward and backward privacy, with various
e�ciency tradeo�s.

Our constructions crucially rely on primitives such as constrained pseudo-random functions
and puncturable encryption schemes. Using these advanced cryptographic primitives allows for a
�ne-grained control of the power of the adversary, preventing her from evaluating functions on
selected inputs, or decrypting speci�c ciphertexts. In turn, this high degree of control allows our SSE
constructions to achieve the stronger forms of privacy outlined above. As an example, we present a
framework to construct forward-private schemes from range-constrained pseudo-random functions,
and the �rst backward-private searchable encryption scheme out of puncturable encryption. Finally,
we provided experimental results for implementations of our schemes, and studied their practical
e�ciency.

The content of this paper is split between Chapter 4 (for the forward-private constructions) and
Chapter 5 (for the backward privacy).

1.3.3 Veri�able Dynamic Symmetric Searchable Encryption: Optimality and
Forward Security [BFP16]

In this paper, we studied and designed the �rst e�cient SSE schemes provably secure against
malicious servers. First, we gave lower bounds on the complexity of such veri�able SSE schemes, and
then constructed generic solutions matching these bounds using e�cient veri�able data structures.
Finally, we modi�ed an existing scheme — SPS [SPS14], which also provides forward privacy of
search queries — and made it provably secure against active adversaries, without increasing the
computational complexity of the original scheme.

Chapter 6 takes this paper up.

1.3.4 Thwarting Leakage Abuse Attacks against Searchable Encryption - A
Formal Approach and Applications to Database Padding [BF17]

As explained above, practically e�cient searchable encryption leaks some information to the server.
Many new attacks have recently been developed, targeting this leakage in order to break the
con�dentiality of the dataset or of the queries, through leakage abuse attacks.

These works helped to understand the importance of considering leakage when analyzing the
security of searchable encryption schemes, but did not explain why these attacks were so powerful
despite the existence of rigorous security de�nitions and proofs, or how they could be e�ciently
and provably mitigated.

Our paper addressed these questions by proposing an analysis of existing leakage abuse attacks
and a way to capture them in new security de�nitions. These new de�nitions also helped us to
devise a way to thwart these attacks and we applied it to the padding of datasets, in order to hide the
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number of queries’ results, and to provide provable security of some schemes with speci�c leakage
pro�le against some common classes of leakage abuse attacks.

Finally, we gave experimental evidence that our countermeasures can be implemented e�ciently,
and easily applied to existing searchable encryption schemes.

This work is reproduced in Chapter 7.

1.3.5 Original Contributions

Two new results are also presented in this thesis. These are lower bounds on the e�ciency of
searchable encryption. We studied the search performance of the search algorithm, when the
repetition of searches is kept secret for the �rst one, which appears in Chapter 3. The second result
bounds the update e�ciency of forward-private schemes, and is presented in Chapter 4.
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Notation, De�nitions and
Preliminaries 2

W
e will need well formalized tools throughout this thesis in order to have a formal
reasoning. This small chapter de�nes the notational, mathematical and cryptographic
building blocks necessary to the rest of the thesis, and that will be used for the subsequent

de�nitions, theorems and proofs.
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2.1 Mathematical Notations

Sets and rings. The set of integers is denoted Z, the set of non-negative integers N. If a and b are
two integers such that a ≤ b, we denote by Ja, bK the set {x ∈ Z|a ≤ x ≤ b} of integers between
a and b (both included). Also, Zn is the ring Z/nZ of integers modulo the integer n. For a prime
integer p, Fp = Zp is the �eld with p elements. ϕ(·) is the Euler totient function. For any set S,
P(S) is the set of all �nite subsets of S.

Bilinear groups. Some of the cryptographic primitives will use an additional structure on groups
called a pairing (a.k.a. bilinear groups). Let G1, G2 and GT be three cyclic groups of the same order
N and with respective generators g1, g2 and gT . The quadrule (G1,G2,GT , e) is called a bilinear
group if e : G1 ×G2 → GT satis�es the following properties:

• For all (a, b) ∈ (ZN )2, e(ga1 , gb2) = e(g1, g2)ab (bilinearity);

• The element e(g1, g2) generates GT (non-degeneracy);

• e(·, ·) is “e�ciently” computable.

We explain the next paragraphs what “e�cient” means. Without loss of generality, we may suppose
that e(g1, g2) = gT . We call bilinear groups with G1 = G2 Type-1 (or symmetric) bilinear groups,
and in this case, we let g = g1 = g2. If G1 6= G2, and there is no e�ciently computable isomorphism
between G1 and G2, it is a Type-3 (asymmetric) bilinear group.

Bit strings. A bit is an element in {0, 1}; a bit string s of length n is a vector of n bits. Let ε
denote the empty bit string of size 0. The set of bit strings of size n is hence denoted {0, 1}n, and
the set of bit strings of �nite length is {0, 1}∗ = ∪n≥0{0, 1}n. The concatenation of two bit strings
x and y is denoted x||y.

Distributions and probabilities. For a �nite set S, s $← S means that s is sampled uniformly
at random from S. The probability of an event E to occur is denoted P[E]. Let X be a random
variable. The expected value of X is E[X], and Var[X] is its variance. The entropy and min-entropy
of a discrete random variable X taking value {x1, . . . , xn} are denoted H1(X) and H∞(X) and
are de�ned as

H1(X) = −
n∑
i=1

P[X = xi] · logP[X = xi],

and H∞(X) = − min
1≤i≤n

{logP[X = xi]} = max
1≤i≤n

{− logP[X = xi]}

where log is the base-2 logarithm. For two discrete random variables Y and Z over the set
{x1, . . . , xn}, the Kullback–Leibler divergence from Y to Z , DKL(Y ||Z), is de�ned as

DKL(Y ||Z) =

n∑
i=1

P[Y = xi] log
P[Y = xi]

P[Z = xi]
.

Finally, we de�ne the distance ∆(D1,D2) between the two distributions D1 and D2 over a set X
as

∆(D1,D2) = max
x∈X
{|P[Y1 = x]− P[Y2 = x]|}

where Y1 (resp Y2) is a random variable following the distribution D1 (resp. D2).
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Asymptotics. For asymptotics, we use the standard Landau notations O(·), o(·), Ω(.), ω (.) and
Θ(.). We also use Õ(.) to hide poly-logarithmic factors in asymptotics:

f(n) = Õ(g(n))⇔ ∃c ∈ N such that f(n) = O(g(n) logc(n)) .

In the following, poly(n) denotes an unspeci�ed function f(n) = O(nc ) for some �xed constant c,
and negl(n) is a negligible function f such that f(n) = o(n−c ) for any constant c > 0.

Algorithms, Turing machines, and oracles. Algorithms are programs for Turing machines.
They may be probabilistic, in which case, they use a tape of the Turing machine �lled with random
bits (also called random coins). By default algorithms are probabilistic.

For an algorithm A, y ← A(x) means that A is run on input x (with fresh random coins if A is
probabilistic), and that the result is stored in y. More generally y ← a states that the result of the
evaluation of the expression a is stored in the variable y.

An interactive Turing machine is a special kind of Turing machines able to communicate with
external algorithms. To do so, the interactive Turing machine uses additional tapes to communicate
with the other Turing machines, namely an input tape to send messages, and an output tape to
receive messages. These other Turing machines are called the oracles of the interactive Turing
machine. We write T O1,O2(x) to say that the Turing machine T is called with input x and has
access to the oracles O1 and O2.

For a distribution D, A(D) denotes the output of the execution of A on an input x sampled from
the distribution D.

In this manuscript, we will often abuse notation, and identify a Turing machine and the algorithm
it runs.

Finally, we will say that an algorithm is e�cient if it runs in time polynomial in the size of its
arguments.

Protocols. A two-party protocol P = (A1, A2) is a pair of algorithms A1 and A2, interactively
executed by a pair of two Turing machines T1 and T2. We denote the execution of the protocol P as

P (input1; input2) = (A1(input1), A2(input2)),

meaning that A1 (resp. A2) is executed by T1 (resp. T2) with input input1 (resp. input2). We write

(out1; out2)
$← A1(input1)↔ A2(input2)

to mean that out1 and out2 are the outputs of the interaction between A1 on input input1 and A2

on input input2, respectively. We also simplify this notation and denote the result of the execution
of P as

(out1; out2)
$← P (input1; input2).

In this formalism, we consider the messages τ1→2 (resp. τ1←2) sent by T1 to T2 (resp. T2 to T1)
as part of the output out1 (resp. out2). These messages are called the transcript of T1 (resp. T2).
Transcripts might be omitted from the output of the protocol for simplicity.

Miscellaneous. As mentioned earlier, the base-2 logarithm of the value x is log x. When the
variable T is a dictionary, T [v] denotes the item associated to v. If no item is associated to v, we
write T [v] = ⊥.
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2.2 Cryptographic Preliminaries

2.2.1 Cryptographic Tools

Security parameter. In order to properly formalize security notions, we need to bound the
computing power of an attacker. Indeed, one can always break cryptosystems using a large enough
computer and spending a high amount of time. However, in cryptography, we restrict ourselves to
the defence against reasonable attackers. To do so, we use the notion of security parameter, denoted
λ ∈ N. The security parameter is passed as an input to the attacker, under its unary representation
1λ, and we only consider attackers whose running time is polynomial in λ, and whose success
probability is non-negligible in λ.

All these notions are formally de�ned in the following paragraphs.

Adversaries. An adversary is a probabilistic Turing machine, which, in this manuscript, run
in polynomial time, which may carry a state when they need to be called several times. In most
cases, we implicitly give as input to the adversary, both the unary representation of the security
parameter, and the state. As adversaries’ inputs are always polynomial in the security parameter,
the polynomial time adversary runs in time polynomial in the security parameter.

Games. Security notions are often de�ned using security games (or experiments). Simple games
are de�ned by having an adversary accessing a set of oracles, sometimes with some restrictions on
calls to these oracles, and the output of the game is de�ned as the output of the adversary.

More generally, games are de�ned using the code-based games formalism introduced in [BR06].
Such a game G is a set of oracle procedures – including an initialization Init procedure and a
�nalization Final procedure – that is executed with an adversaryA, i.e. A has access to the procedures,
with some possible restrictions. For instance, the Init oracle is always the �rst one to be called and
Final the last one, once A halted, taking A’s output as input. The output of Final is called the output
of the game and is denoted GA(1λ). When Final is omitted, it just forwards the adversary’s output.

In those games, at startup, the boolean variables are initialized to false and the integer variables
to 0.

Statistical indistinguishability. LetD1 andD2 be two distributions over the set S. Distributions
D1 and D2 are said to be statistically indistinguishable if

∆(D1,D2) ≤ negl(λ) .

We denote
D1 ≈ D2

the fact that D1 and D2 are statistically indistinguishable.

Computational indistinguishability. LetD1 andD2 be two distributions which can be sampled
in polynomial-time in λ, and A be a polynomial-time adversary A outputting a single bit. The
advantage of A distinguishing D1 and D2 is de�ned by

AdvD1,D2(A, 1λ) = |P[A(D1) = 1]− P[A(D2) = 1]| .
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Distributions D1 and D2 are said to be computationally indistinguishable if for any polynomial-time
adversary A, the advantage of A in distinguishing D1 and D2 is negligible in λ. We denote

D1 ≈c D2

the fact that D1 and D2 are computationally indistinguishable. Note that two statistically indistin-
guishable distributions are computationally indistinguishable.

Similarly, we say that two di�erent gamesG0 andG1, both outputting one bit, are indistinguishable
if, for any polynomial-time adversary A, the advantage of A in distinguishing G0 and G1, denoted
AdvG0,G1(A, 1λ) and de�ned as

AdvG0,G1(A, 1λ) =
∣∣P[GA0 = 1]− P[GA1 = 1]

∣∣ ,
is negligible in λ. In this case, we write G0 ≈c G1.

Game-based proofs. Many of the security notions that we will de�ne and use in this thesis
are based on the indistinguishability of two di�erent games G0 and G1. Unfortunately, in many
cases, we will not be able to directly prove this indistinguishability. Instead, we proceed by game
hops, by constructing a sequence of games, starting with G0, and ending with G1, and proving
that consecutive games are indistinguishable. The distinguishing advantage between G0 and G1 of
an adversary A will then be the sum of the distinguishing advantages of A between every pair of
consecutive games in the games sequence.

The random oracle model (ROM). The Random Oracle Model (or ROM), formally introduced
by Bellare and Rogaway in [BR93], is a computational model where all parties have access to a
(public) random oracle. As its name indicates, a random oracle outputs a random string for every
new input it is given.

To prove the security of some schemes in the ROM, we often use an additional feature, called
programmability. This feature allows the games for pre-programming the output of the random
oracle on some inputs, in a way that the programmed random oracle is indistinguishable from a
regular random oracle.

The ROM is a useful tool to show the security of some schemes. However, in practice, random
oracles cannot exist (they would require an in�nite description), and are often instantiated using
hash functions. Actually, there is much debate among cryptographers on the quality of the ROM
as an abstraction to analyze the security of cryptosystems [KM15]. Yet, for applied and real-world
cryptography, it is a widely accepted and widely used model, as there is no convincing evidence
that ROM-protocols have non-theoretical security weaknesses.

2.2.2 Hardness Assumptions

Cryptographic primitives rely on the hardness of some mathematical problems. We describe here
the ones that will be useful for our constructions.

The RSA assumption. The RSA assumption, as introduced by Rivest, Shamir and Adleman
in [RSA78] states that it is infeasible to compute the e-th root of an element modulo N when N is a
product of two large primes, and e is relatively prime with ϕ(N).

Let RSAGen be de�ned as the function, which, on input the security parameter 1λ, randomly
samples two distinct λ bits primes p and q, computesN = p ·q, randomly picks an integer e less than
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and relatively prime to ϕ(N) = (p− 1)(q − 1), and outputs the pair (N, e). For any adversary A,
let the advantage of A in solving the RSA problem, AdvRSA

A (λ), be de�ned as:

AdvRSA
A (λ) = P[(N, e)← RSAGen(1λ), y

$← Z∗N , x← A(1λ, N, e, y) : xe = y mod N ].

The RSA assumption is that the RSA problem is hard: for any polynomial-time adversary A,
AdvRSA

A (λ) is negligible in λ.

Discrete logarithm. Solving the discrete logarithm problem in the cyclic group G with gener-
ator g, and of order N consists in �nding the integer x ∈ ZN such that gx = h for an element
h ∈ G.

In terms of security games, this can be formalized as follows. For any adversary A, let AdvDL
G,A(λ)

be the quantity
AdvDL

G,A(λ) = P[h
$← G, x← A(1λ,G, g, h) : gx = h].

We say that the discrete logarithm is hard in G if for any polynomial-time adversary A, AdvDL
G,A(λ)

is negligible in λ. The discrete log is believed to be hard on large prime order subgroups of (F∗p,×),
and on cyclic subgroups of elliptic curves over �nite �elds: this is the discrete logarithm assumption.

The Di�e-Hellman assumptions. A strengthening of the discrete logarithm assumption is the
Computational Di�e-Hellman (CDH) assumption. It requires that an adversary, given ga and gb, for
g a generator of the group G of order N , and a, b ∈ Zn, cannot e�ciently compute ga·b. Formally,
for an adversary A, we de�ne the advantage AdvCDH

G,A (λ) as

AdvCDH
G,A (λ) = P[a

$← ZN , b
$← ZN , h← A(1λ,G, ga, gb) : gaḃ = h].

We say that the CDH assumption is hard in G if for any polynomial-time adversary A, AdvCDH
G,A (λ)

is negligible in λ. The CDH assumption is supposed to be hard on large prime order subgroups of
(F∗p,×), and on cyclic subgroups of elliptic curves over �nite �elds.

A stronger assumption is also commonly encountered, the decisional version of CDH, called
the Decisional Di�e-Hellman (DDH) assumption. This time the adversary is asked to distinguish
between the triple (ga, gb, ga·b) and the triple (ga, gb, gc), where c is picked randomly in Zn.

AdvDDH
G,A (λ) =

∣∣∣P[(a, b)
$← Z2

N : A(1λ, ga, gb, gab) = 1]

−P[(a, b, z)
$← Z3

N : A(1λ, ga, gb, gz) = 1]
∣∣∣ .

We say that the DDH assumption is hard in G if for any polynomial-time adversary A, AdvDDH
G,A (λ)

is negligible in λ. The DDH assumption is also supposed to be hard on large prime order subgroups
of (F∗p,×), and on cyclic subgroups of elliptic curves over �nite �elds.

Cryptographic pairings. We will require that bilinear groups satisfy a hardness assumption
called the Decisional Bilinear Di�e-Hellman (DBDH) assumption [BB04]: it requires that a bounded
adversary cannot distinguish the tuple (g, ga, gb, gc, e(g, g)abc) from the tuple (g, ga, gb, gc, e(g, g)z),
where a, b, c and z are randomly generated.
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Formally, for a bilinear group (G1,G2,GT , e), the advantage AdvDBDH
G1,G2,GT ,e,A(λ) of an adver-

sary A in the Decisional Bilinear Di�e-Hellman game is de�ned as:

AdvDBDH
G1,G2,GT ,e,A(λ) =

∣∣∣P[(a, b, c)
$← Z3

N : A(1λ, ga, gb, gc, e(g, g)abc) = 1]

−P[(a, b, c, z)
$← Z4

N : A(1λ, ga, gb, gc, e(g, g)z) = 1]
∣∣∣ .

The bilinear group is said to be secure if, for any polynomial-time adversary A, AdvDBDH
G1,G2,GT ,e,A(λ)

is negligible in λ.
In this de�nition, we only considered the symmetric setting for the bilinear group, while the

de�nition can trivially be adapted to an asymmetric pairing. In practice, cryptographic pairings are
instantiated using elliptic curves, and we will use Type-3 pairings only. We refer to [GPS06] for
more details on pairings.

2.3 Cryptographic Primitives

In this Section, we de�ne and describe the cryptographic primitives that we will use throughout
this thesis. Completely formal de�nitions of most of these objects can be found in [Gol04] (we often
adopt here a simpli�ed formulation).

2.3.1 Pseudorandom Function (PRF)

A pseudorandom function is a function that is computationally indistinguishable from a truly random
function. More formally, let F : K ×D → R be a polynomial-time computable map, where K and
R are �nite. K is the key space of F , and D its domain, whileR is the range of F . They respectively
have size |K| = 2`K(λ), |D| = 2`D(λ), and |R| = 2`R(λ), with `K, `D, `R : N→ N. For K ∈ K, we
denote FK the function that is the partial evaluation of F on K , namely

FK : D → R
x 7→ F (K,x)

Hence, F can be seen as a function family.

De�nition 2.1 (Pseudorandom function). Let F : K × D → R be a function family de�ned as
above, and Func(D,R) the set of the functions of domain D and rangeR. The pseudorandom function
distinguishing advantage Advprf

A,F (λ) of A against F is de�ned as

Advprf
F,A(λ) =

∣∣∣P[K
$← K : AFK(·)(1λ) = 1]− P[π

$← Func(D,R) : Aπ(·)(1λ) = 1]
∣∣∣ .

The PRF advantage function of F is de�ned as follows. For any integers t, q,

Advprf
F (λ, t, q) = max

A
Advprf

F,A(λ)

where the maximum is taken over all adversary A with time complexity t, making at most q oracle
queries. The function F is said to be a pseudorandom function if Advprf

F,A(λ) is negligible in λ for any
polynomial-time adversary A.
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2.3.2 Constrained Pseudorandom Function (CPRF)

The idea of constrained PRFs (CPRF) has been introduced in independent works by Boneh and Waters,
Boyle et al., and Kiayias et al. [BW13; BGI14; KPTZ13]. A constrained PRF is associated with a
family of boolean circuits C. The holder of the master PRF key is able to compute a constrained key
KC corresponding to a circuit C ∈ C; the constrained key KC allows for evaluation of the PRF on
inputs x such that C(x) = 1, but only on the inputs satisfying this predicate.

More formally, a constrained PRF F with respect to a circuit family C is a mapping F : K×D → R,
together with a pair of algorithms (F.Constrain, F.Eval), de�ned as follows.

• F.Constrain(K,C) is a probabilistic polynomial-time algorithm taking as input a key K ∈ K
and a circuit C ∈ C. It outputs a constrained key KC .

• F.Eval(KC , x) is a deterministic polynomial-time algorithm taking as input a constrained
key KC for circuit C , and x ∈ D. It outputs is an element y ∈ R.

When no confusion can arise, we may leave out Eval and write F.Eval(KC , x) as F (KC , x).
As for the regular PRF case, the key space, domain and range have respective size |K| = 2`K(λ),
|D| = 2`D(λ), and |R| = 2`R(λ), with `K, `D, `R : N→ N.

Correctness. A CPRF F is correct if C(x) = 1 implies F (K,x) = F.Eval(KC , x), where KC =
F.Constrain(K,C), for all K ∈ K, x ∈ D, and C ∈ C.

Security De�nition. The security properties of a constrained PRF can be formalized using the
security game Gcprf described in Figure 2.1. Informally, the adversary A wins the game (the game
outputs 1) when he is able to distinguish between real evaluations of F and truly random elements
ofR on inputs such that he never queried a constrained key KC for a circuit C evaluating to 1 on
these inputs. The formal de�nition follows.

Init()

K
$← K

b
$← {0, 1}

E ← ∅, Z ← ∅, L← ∅
Challenge(x)

Z ← Z ∪ {x}
if b = 0 then
y

$← R
else
y ← F (K,x)

end if
return y

Eval(x)

E ← E ∪ {x}
return F (K,x)

Constrain(C)

L← L ∪ C
return F.Constrain(C)

Final(b′)

if b = b′, E ∩ Z = ∅
and ∀(C, z) ∈ (L,Z), C(z) = 0

return 1 . The adversary wins
return 0 . The adversary loses

Figure 2.1 – Procedures of the Gcprf security game. The lists E, Z , and L are, respectively, the list
of evaluated inputs, challenged inputs and constraints. The condition in Final ensures
that the game is only challenged on constrained inputs, and never on an evaluated
input.
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De�nition 2.2 (Constrained PRF). Let F be a constrained function as de�ned previously. The advan-
tage of the adversary A in the constrained PRF security game, Advcprf

F,A(λ), is

Advcprf
F,A(λ) = P[GAcprf(1

λ) = 1].

We say that F is a constrained pseudorandom function if, for any polynomial-time adversary A,
Advcprf

F,A(λ) is negligible in the security parameter λ.

2.3.3 Pseudorandom Permutation (PRP)

A pseudorandom permutation is a permutation that is indistinguishable from a truly random
permutation. Let F : K ×D → R be a function family. We say that F is a family of permutation if
for every K ∈ K, FK is a bijection between D andR. We will always be in the case where D = R.

De�nition 2.3 (Pseudorandom permutation). Let F : K × D → D be a permutation family, and
Perm(D) the set of all permutations of D. The pseudorandom function distinguishing advantage
Advprp

F,A(λ) of A against F is:

Advprp
F,A(λ) =

∣∣∣P[K
$← K : AFK(·)(1λ) = 1]− P[π

$← Perm(D) : Aπ(·)(1λ) = 1]
∣∣∣ .

The PRF advantage function of F is de�ned as follows. For any integers t, q,

Advprp
F (λ, t, q) = max

A
Advprp

F,A(λ)

where the maximum is taken over all adversary A with time complexity t, making at most q oracle
queries. The function F is said to be a pseudorandom permutation if Advprp

F,A(λ) is negligible in λ for
any polynomial-time adversary A.

PRF switching lemma. It will be useful in the security proofs to be able to switch from a PRP to
a PRF. To do so, we will use the well-known PRF switching lemma that states that a PRP is also a
PRF. We refer the reader to [BR06, Lemma 1] for the proof.

Lemma 2.1. Let F be a PRP over the set D. For any adversary A making at most q queries,∣∣∣Advprf
F,A(λ)− Advprp

F,A(λ)
∣∣∣ ≤ q2

2|D|
.

2.3.4 Trapdoor Permutation (TDP)

Informally, a trapdoor permutation (TDP) π is a permutation over a setM such that, using a public
key PK, π can be easily evaluated, but the inverse π−1 can be e�ciently computed only with the
secret SK.

More formally, a family of trapdoor permutations over a set M is a triple π of algorithms
(KeyGen,Eval, Invert) such that:

• KeyGen is a randomized algorithm taking as input the security parameter 1λ that generates a
pair (SK,PK), where SK is the private key and PK the public key;

• Eval is a deterministic polynomial-time algorithm taking as inputs a public key and an element
inM, and such that for every public key PK generated by KeyGen, π(PK, .) is a bijection
overM;
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• Invert is a deterministic polynomial-time algorithm taking as inputs a secret key and an
element inM, such that for every key pair (PK, SK) generated by KeyGen,

Invert(SK,Eval(PK, x)) = x.

In the following, we will simplify the notations, and use πPK(·) to denote Eval(PK, ·) and π−1
SK(·)

for Invert(SK, ·).

De�nition 2.4 (Secure trapdoor permutation). For an adversary A, the advantage Advtdp
π,A(λ) of A

in the trapdoor permutation security game is:

Advtdp
π,A(λ) = Pr[y

$←M, (SK,PK)← KeyGen(1λ), x← A(1λ,PK, y) : πPK(x) = y].

For any integer t, Advtdp
π (λ, t) is:

Advtdp
π (λ, t) = max

A
Advtdp
π,A(λ)

where the maximum is taken over all adversary A with time complexity t. The trapdoor permutation π
is said to be secure if, for any polynomial-time adversary A, AdvOW

π,A(λ) is negligible in λ.

We use the notation π(c)
PK(x) (resp. π(−c)

SK (x)) for the iterated application of πPK (resp. π−1
SK) c

times.

2.3.5 Hash Function

A hash function family is a polynomial-time computable map H : K × D → R where K and R
are non-empty sets. We denote the partial evaluation of H on K as HK(·). For hash functions, we
are interested in the di�culty with which an adversary is able to �nd two distinct elements in D
evaluating to the same elements inR.

De�nition 2.5. Let H : K ×D → R be a hash function family, and for any adversary A, let

Advcol
H,A(λ) = P[K

$← K, (M,M ′)← A(K) : M 6= M ′ ∧HK(M) = HK(M ′)].

The hash function family H is said to be a collision-resistant family of hash function if, for any
polynomial-time adversary A, Advcol

H,A(λ) is negligible in λ.

In practice, we only have access to a single element of the hash function family, which is denoted
H .

Instantiating the ROM. Frequently, the random oracle used in the ROM (cf. Section 2.2.1) will be
instantiated using a hash function. Unfortunately, many hash functions share undesirable properties
(e.g. length-extension attacks) that make them un�t for such direct use as a random oracle. Instead,
we will use the HMAC construction [BCK96] with a public key as a random oracle. For a hash
function H , HMAC is de�ned as

HMAC(K,x) = H((K ⊕ opad)||H((K ⊕ ipad)||x))

where opad and ipad are two constants and ⊕ is the exclusive-OR (XOR) operation.
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(Multi)set hashing. In the case D is a set of sets, it would be nice to be able to easily compute
the hash of S ∪ S′ from the hashes of S and S′. Multiset hashing was introduced by Clarke et
al. [CDD+03], based on the framework proposed by Bellare and Micciancio [BM97] for incremental
hashing. Here, we slightly extend their de�nition so it �ts our needs in this thesis.

A set hashing function is a family of quadruples of probabilistic polynomial algorithms (HK,≡HK ,
+HK ,−HK ), indexed by a key K ∈ K, such thatHK : P(DK)→ RK maps sets whose elements
are in DK to an element inRK , and for all S ⊂ P(DK),

• HK(S) ≡HK HK(S) (comparability)

• ∀x ∈ D \ S,HK(S ∪ {x}) ≡HK HK(S) +HK HK({x}) (insertion incrementality)

• ∀x ∈ S,HK(S \ {x}) ≡HK HK(S)−HK HK({x}) (deletion incrementality).

We want multiset hash functions to be secure in the sense of collision resistance as a regular hash
function: it is infeasible for an adversary to �nd two sets hashing to the same value. Note that in
this de�nition, we chose to make the domain and range to directly depend on the key K (previously,
they depended only on its size).

De�nition 2.6. LetH be a set hashing function. For any adversary A, let

Advcol
H,A(λ) = P[K

$← K, (S, S′)← A(K) : S 6= S′ ∧HK(S) ≡HK HK(S′)].

The MSet-Mu-Hash construction of Clark et al. [CDD+03] for multisets works as follows: if H is
a regular (i.e. non incremental) hash function,H(xm1

1 , . . . , xmnn ) is de�ned as
∏
H(xi)

mi , where
xmii represents the element xi with multiplicity mi. Formally, MSet-Mu-Hash is de�ned as follows:

HK(M) : P(D)→ Fq
M 7→ Πx∈DHKH (x)Mx

whereH : D → Fq is a hash function from the setD to the �eldFq indexed by the key (KH , q) ∈ KH
where q is a prime of size poly(λ), and Mx is the multiplicity of x in M . The key K of H is
then de�ned as (KH , q). This construction clearly �ts our functional needs: for S ⊂ D, we
can easily compute (i.e. in constant time) HK(S ∪ {x}) (resp. HK(S \ {x})) from HK(S) and
HK({x}) = H(x) — or even from x if we have access toH — asHK(S ∪{x}) = HK(S) ·HKH (x)
(resp. HK(S \ {x}) = HK(S) ·HKH (x)−1).

Clarke et al. show thatH is collision resistant as long as the discrete log assumption holds in Fq
when H is modeled as a random oracle.

Theorem 2.2 (Theorem 2 of [CDD+03]). If the discrete log assumption holds in Fq , and H is a
(non-programmable) random oracle, the multiset hash functionH is collision resistant.

Note that multiset hashing can also be based on elliptic curves for improved e�ciency [MTA16].
The security of the construction would immediately follow, using the hardness of discrete logarithm
on cyclic subgroups of elliptic curves instead of its hardness on �nite �elds.

Note that, as for regular hash functions, we will omit the key as, in practice, we only have access
to a single element of the multiset hash function family.
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2.3.6 Semantically Secure Encryption

A (symmetric) encryption scheme SE is a triple of algorithms (KeyGen,Enc,Dec). The randomized
key generation algorithm KeyGen takes as input the security parameter in its unary form and
outputs a key K from the key set K. The encryption algorithm Enc takes a key and a plaintext m in
the message spaceM and outputs a ciphertext c← Enc(K,m) from the ciphertext space C. Note
that Enc can be either randomized or deterministic. The decryption algorithm is deterministic, and
as input a key K and a string c, and outputs either an element m ∈M or the symbol ⊥.

In the following, we will only consider correct schemes, that is schemes such that, for all keys
K ∈ K, and all messages m ∈M,

Dec(K,Enc(K,m)) = m.

Many security de�nitions have been developed for (symmetric) encryption. Here we will consider
indistinguishability against chosen plaintext attacks (IND-CPA). More precisely, we use the Left-
Or-Right (LOR-CPA) de�nition, as given by Bellare et al. [BDJR97].

De�nition 2.7. Let SE = (KeyGen,Enc,Dec) be a symmetric encryption scheme. For b ∈ {0, 1},
we de�ne LoR as

LoR(x0, x1, b) = xb.

For an adversary A, the IND-CPA advantage of A against SE is

Advcpa
SE,A(λ) =

∣∣∣P[K
$← KeyGen(1λ) : AEncK(LoR(·,·,0)(1λ) = 1]

−P[K
$← KeyGen(1λ) : AEncK(LoR(·,·,1)(1λ) = 1]

∣∣∣ ,
with the restriction that A must only query the oracle EncK(LoR(·, ·, b)) with pairs of messages of
equal length. The IND-CPA advantage function of SE is de�ned as follows. For any integers t, q, µ,

Advcpa
SE (λ, t, q, µ) = max

A
Advcpa

SE,A(λ)

where the maximum is taken over all adversary A with time complexity t, making at most q oracle
queries on messages of total length at most µ. SE is said to be a IND-CPA-secure if Advcpa

SE,A(λ) is
negligible in λ for any polynomial-time adversary A.

In practice, we will suppose that K = {0, 1}λ, andM = C = {0, 1}∗, unless otherwise speci�ed.
Also, the KeyGen algorithm will just pick a key in K uniformly at random.

2.3.7 Message Authentication Code (MAC)

A message authentication code is used to ensure that a message comes from the right sender. It
is a triple of algorithms (KeyGen,MAC,Vf). The randomized key generation algorithm KeyGen
takes as input the security parameter in its unary form and outputs a key K from the key set K.
The algorithm MAC takes as input K ∈ K and a string m ∈ {0, 1}∗ and outputs a tag T ∈ {0, 1}λ.
Finally Vf , on input a key K , a string m and a tag T , outputs ⊥ or >.

We require that a MAC is correct, namely that for all K ∈ K, and all string m ∈ {0, 1},

Vf(K,m,MAC(K,m)) = >.

The security requirement of a MAC will be that it is infeasible for any polynomial-time adversary to
forge a valid tag without the secret key.
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Init()

K
$← K

win← false
Q← ∅

Query(x)

t← MAC(K,x)
Q← Q ∪ {(x, t)}
return t

Challenge(x′, t′)

if Vf(K,x′, t′) = >
and (x′, s′) /∈ Q then

win← true
end if

Final()

return win

Figure 2.2 – Procedures of the Geuf-cma security game.

De�nition 2.8. Let (KeyGen,MAC,Vf) be a message authentication code. The advantage of A in
the existential unforgeability with chosen messages attack game (EUF-CMA), Adveuf-cma

A,MAC (λ), is

Adveuf-cma
MAC,A (λ) = P[GAeuf-cma(1λ) = 1].

were the Geuf-cma is described in Figure 2.2. The EUF-CMA advantage function is de�ned as follows.
For any integers t, q, µ,

Adveuf-cma
MAC (λ, t, q, µ) = max

A
Adveuf-cma

MAC,A (λ)

where the maximum is taken over all adversary A with time complexity t, making at most q oracle
queries on messages of total length at most µ. MAC is said to be an EUF-CMA-secure MAC if
Adveuf-cma

MAC,A (λ) is negligible in λ for any polynomial-time adversary A.

The most handy and practical way to instantiate a MAC is to use a PRF with variable input length,
i.e. with domain D. For such a PRF F , we will de�ne MAC and Vf as

MAC(K,x) = F (K,x)

Vf(K,x, t) =

{
> if F (K,x) = t

⊥ otherwise.

2.3.8 Authenticated Encryption with Associated Data (AEAD)

Using authenticated encryption with associated, one is able to ensure both the con�dentiality of a
message and the authenticity of the message plus some optional additional data. Am AEAD scheme
SE is a triple of algorithms (KeyGen,Enc,Dec).

The randomized key generation algorithm KeyGen takes as input the security parameter in its
unary form and outputs a key K from the key set K. The encryption algorithm Enc takes a key, an
optional string a called additional data, and a plaintext m in the message spaceM and outputs a
ciphertext c← Enc(K, a,m) from the ciphertext space C. The decryption algorithm is deterministic,
and as input a key K , the (optional) additional data a, and a string c, and outputs either an element
m ∈M or the symbol ⊥.

In the following, we will only consider correct schemes, that is schemes such that, for all keys
K ∈ K, all string a ∈ {0, 1}∗, and all messages m ∈M,

Dec(K, a,Enc(K, a,m)) = m.
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De�nition 2.9. LetSE = (KeyGen,Enc,Dec) be an authenticated encryption schemewith additional
data. For an adversary A, the AE advantage of A against SE is

Advae
SE,A(λ) =

∣∣∣P[K
$← KeyGen(1λ) : AEncK(·,·),DecK(·,·,·)(1λ) = 1]− P[A$(·,·),⊥(·,·,·)(1λ) = 1]

∣∣∣
where $ is an oracle that, on input (a,m), picks a random string r of size |m| and returns EncK(a, r)
and ⊥ is the oracle always returning the symbol ⊥, with the restriction that Dec (resp. ⊥) is never
called on a output of Enc (resp. $).

The AE advantage function of SE is de�ned as follows. For any integers t, qe, µe, qd, µd,

Advae
SE(λ, t, qe, µe, qd, µd) = max

A
Advae

SE,A(λ)

where the maximum is taken over all adversary A with time complexity t, making at most qe (resp. qd)
encryption (resp. decryption) oracle queries on messages of total length at most µe (resp. µd). SE is
said to be a secure AEAD if Advae

SE,A(λ) is negligible in λ for any polynomial-time adversary A.

Again, in practice, we will suppose that K = {0, 1}λ, andM = C = {0, 1}∗, unless otherwise
speci�ed, and that the KeyGen algorithm will just pick a key in K uniformly at random.
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Basics of Searchable
Encryption 3

F
rom the tools introduced in the previous chapter, we can start to formalize the re-
quirements of searchable encryption, especially in terms of security. In this chapter, we will
start to formalize the problem and give security de�nitions, which will be used throughout

this thesis. We will also introduce the notion of leakage, i.e. the information that the server is
allowed to learn about the database and the queries. In particular, we will show that it is impossible
to achieve both best possible security and optimal e�ciency by proving two lower bounds. In a third
section, we will present some results about the locality of single-keyword searchable encryption,
and see that we cannot construct a secure scheme with the same performance as a plain database.
Finally, we will quickly study some practical attacks against searchable encryption schemes, and see
how important it is to understand the extent of the information that leaks from these constructions.
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3.1 De�nitions

In order to go further, and to start proving security theorems, we have to formalize Searchable
Encryption and its security.

3.1.1 Formalism of Symmetric Searchable Encryption

A database DB is de�ned as:

DB = {(indi,Wi) : 1 ≤ i ≤ D} ,

with indi ∈ {0, 1}`,Wi ∈ {{0, 1}∗}∗ and where indi are distinct document indices, represented by
`-bit strings, and Wi is a �nite set of keywords matching document indi, represented by binary
strings of arbitrary �nite length. Note that, in this manuscript, documents are identi�ed with their
indices: indeed we focus on index-based searchable encryption, where the documents are encrypted
(and stored) separately from the datasture used to search among these. In addition, let us de�ne:

D = |DB| the number of documents;
W =

⋃D
i=1 Wi the set of keywords;

K = |W| the number of keywords;
N =

∑D
i=1 |Wi| the number of document/keyword pairs.

Let DB(w) denote the set of documents containing keyword w:

DB(w) = {indi|w ∈Wi and (indi,Wi) ∈ DB} .

The value nw is the number of documents matching w: nw = |DB(w)|. Also, we will use the
notation aw for the total number of entries added to w (i.e. including the entries which were later
deleted). We refer to Section 3.2.2 for the formal de�nition of aw.

A dynamic symmetric searchable encryption (SSE) scheme is a triple Σ = (Setup, Search,Update)
consisting of one algorithm and two protocols between a client and a server:

• Setup(DB) is a probabilistic algorithm that takes as input the initial database DB. It outputs
a triple (EDB,KΣ, σ), where KΣ is the master secret key, EDB is an encrypted database, and
σ is the client’s state.

• Search(KΣ, q, σ; EDB) = (SearchC(KΣ, q, σ), SearchS(EDB)) is a protocol between the
client with input the master secret key KΣ, the client’s internal state σ, and a search query q;
and the server with input the encrypted database EDB.
After completing the Search protocol, the client outputs a list R of results and a new internal
state σ′. Both R and σ′ can take the special value ⊥ to signify an error or a failure in the
execution of the protocol. The server possibly outputs an updated encrypted database EDB′.
The query q can be of any kind: although we will mainly focus on search queries restricted to
a single-keyword w (and hence often identify q with w), this formalism also supports range
queries or boolean queries — a search query consisting of a boolean formula φ and a set of
keywords (w1, . . . , wn) matching the set of documents DB(φ,w1, . . . , wn) such that

DB(φ,w1, . . . , wn) = {indi|φ(b1, . . . , bn) = true, where bj = (wj ∈Wi),

and (indi,Wi) ∈ DB}.

More generally, DB(q) denotes the set of documents matching the query q.
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• Update(KΣ, σ, op, in; EDB) = (UpdateC(KΣ, σ, op, in),UpdateS(EDB)) is a protocol be-
tween the client with input the key KΣ and internal state σ, an operation op, and an input
in for the operation; and the server with input EDB. Again, this formalism covers a wide
range of di�erent update operations, such as merges, duplications, etc. Yet, this thesis focuses
on simpler operations: the update operations are taken from the set {add, del}, meaning,
respectively, the addition and the deletion of a set of keywords to a document. The input in is
thus parsed as an index ind, pointing to the modi�ed document, and a set W of keywords
to insert or delete. Insertion of a new document is modeled by using a completely new and
previously unused index ind.
At the end of the execution of the protocol, the client outputs a new state σ′, which can take
the special value ⊥, and the server outputs a new encrypted database EDB′.

These searchable encryption schemes are called symmetric because the same key KΣ is used for
both the updates and the search queries. One could extend the de�nition to support two di�erent
keys: a private key for search and a public key for updates, so that anyone can enrich the encrypted
database (e.g. by sending an email encrypted with the public key). This setting, called ‘Public key
encryption with keyword search’ (PEKS) has been well de�ned [BDOP04; BKOS07], but in this
thesis, we will focus on the symmetric setting. Similarly, some works looked at how to let anyone
with a public key issue some search queries [BBO07].

In this formalism, we explicitly separate the client’s state and the key. Informally, we want the
key to be �xed while the state is mutable. We do not require a scheme to have a state (beyond the
key), and when it is empty, we may omit it from the protocol’s signature. Also, we do not require
the size of the state to be upper bounded, e.g. by the number of keywords. For example, we could
imagine a scheme working only on the client side, with no storage on the server. This would be
a perfectly valid (and secure), but very costly scheme. Hence, the size of the client’s state is an
important parameter regarding the tradeo� between security and performance.

An important restriction of this de�nition is static symmetric searchable encryption. Such schemes
do not support update requests, and hence do not implement the Update protocol. In that case, once
the encrypted database has been set up, it is immutable.

3.1.2 Correctness

The correctness of an SSE scheme is the basic property we want to ensure: the search protocol must
return the correct result for every query, except with negligible probability. We formally de�ne
correctness with the security game SSECorr described in Figure 3.1.

The game uses the function Apply that outputs DB updated according to the input operation op,
and the input in for that operation. Also, note that, accordingly to the protocol formalism described
in Section 3.1.1, in the Search and the Update game procedures, τ is the transcript of the client —
i.e. the messages sent by the client to the server — and that we omit the transcript of the server.

In this game, the adversary tries to construct a sequence of operations leading to an incorrectly
answered search query, while respecting the protocols. In particular, he is not allowed to modify the
encrypted database, nor the messages (the transcripts) between the client and the server.

De�nition 3.1 (SSE Correctness). Let Σ be an SSE scheme. For an adversary A, the advantage
AdvSSE-corr

Σ,A (λ) of A in the correctness game is de�ned as

AdvSSE-corr
Σ,A (λ) = P[SSECorrAΣ(λ) = 1].

An SSE scheme Σ is correct if for any polynomial-time adversary A, AdvSSE-corr
Σ,A (λ) is negligible in λ.



42 Chapter 3 Basics of Searchable Encryption

Init(DB)

(EDB,KΣ, σ)
$← Setup(DB)

return EDB

Search(q)

(R, σ, τ ; EDB)
$← Search(KΣ, σ, q; EDB)

if R 6= DB(q) or σ = ⊥
win← true

return τ
Final()

return win

Update(op, in)

(σ′, τ ; EDB′)
$← Update(KΣ, σ, op, in; EDB)

if σ′ = ⊥ then
win← true

else
DB← Apply(DB, op, in)
EDB← EDB′, σ ← σ′

end if
return τ

Figure 3.1 – SSECorrΣ: Correctness game for the SSE scheme Σ = (Setup, Search,Update).

3.1.3 Con�dentiality

We saw in Section 1.2.1 that it looks hard to construct a scheme that is both secure and e�cient,
security meaning here con�dentiality of the query and of the database. To formalize this assertion,
we �rst have to give a rigorous de�nition of the con�dentiality of an SSE scheme, in particular if we
also want to have �ne-grained de�nitions for not perfectly con�dential constructions.

It is interesting to notice that the Song et al. paper [SWP00] does not give any formal security
de�nition, although the authors already underline that the server could learn a lot of information
using statistical techniques if the client user asks many queries. Indeed, the authors only show that
their construction is a secure encryption scheme, but do not consider the information leaked by the
queries.

The �rst formal security de�nition speci�cally designed for searchable encryption applications
comes from Goh [Goh03], who gave a de�nition of secure indexes — which can not only be
used for searchable encryption, but more generally for any application requiring fast access to an
information using a trapdoor. Unfortunately, the IND-CKA notion de�ned by Goh does not protect
the con�dentiality of trapdoors, but only of the index.

Chang and Mitzenmacher [CM05] tried to integrate the con�dentiality of the trapdoors in their
simulation-based security de�nition. Unfortunately, Curtmola et al. showed in [CGKO06] that this
de�nition was �awed (a problem with the order of quanti�ers). Also, it is non-adaptive and might
not re�ect the behavior of an adversarial server.

Modern de�nitions to formalize the secrecy of an SSE scheme come from [CGKO06]. In this paper,
the authors give two de�nitions, one based on indistinguishability, the other based on simulatability,
both using the notion of leakage (a.k.a trace in the paper). Indeed, the leakage is formally taken
into account and plays an important role in the security de�nitions: the indistinguishability-based
de�nition states that two executions of SSE protocols with the same leakage are indistinguishable,
while the simulation-based de�nition states that an execution of the SSE protocol can be simulated
using the leakage. Informally, both de�nitions ensure that the server should not learn any information
beyond the leakage (which is a parameter of the de�nitions).

3.1.3.1 Leakage Function

Before going further, it is essential to clearly formalize this leakage. First let us de�ne a history.

De�nition 3.2 (Database and queries history). An history H is a tuple H = (DB, r1, . . . , rm)
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consisting of a database DB and m queries r1, . . . , rm. Each query ri can either be a search query
ri = qi, or an update query ri = (opi, ini).

To do so, as explained before, the de�nition will be parametrized using a leakage function L, more
exactly a triple of stateful algorithms (LStp,LSrch,LUpdt), capturing what is leaked by, respectively,
the setup algorithm, the search protocol and the update protocol.

This notation, introduced by Chase and Kamara for the generic case of structured encryption
in [CK10], generalizes the trace de�nition of Curtmola et al. [CGKO06]. Because the leakage function
is stateful, it will not be necessary to pass the whole history as an argument of the leakage function
every time, as in [CJJ+13].

In the following, we will slightly overload the notations, and use L(H) for an history H =
(DB, r1, . . . , rm) to denote (LStp(DB),L(r1), . . . ,L(rm)) where L(ri) = LSrch(qi) if ri is a search
query, and L(ri) = LUpdt(opi, ini) if ri is an update query.

3.1.3.2 Honest-but-curious Adversaries

We start with the simpler setting of an ‘honest-but-curious’ server, i.e. a server who tries to learn as
much information as he could, without deviating from the protocols. In the next section, we will
see how to generalize these de�nitions to a ‘malicious’ server who can deviate from the prescribed
behavior.

Indistinguishability-based de�nition. The indistinguishability-based security de�nition of
Curtmola et al. [CGKO06] can be reformulated (equivalently) using a security game, SSEIndΣ,L,
parametrized by the scheme Σ and the leakage function L, de�ned in Figure 3.2.

The SSEInd game picks a random bit b and the adversary’s goal is to guess b. To do so, he
submits two histories H0 and H1, and receives the encrypted database and the transcript τ of the
queries corresponding to Hb. However, the histories submitted by the adversary must satisfy a very
important constraint: the leakage must be the same for both histories. Otherwise, the game aborts
as soon as the adversary submits two queries (or two databases) having a di�erent leakage. Finally,
the adversary outputs a bit b′, and wins the game if he successfully guesses b.

Init(DB0,DB1)

if LStp(DB0) 6= LStp(DB1)
Abort game

b
$← {0, 1}

(EDB,KΣ, σ)
$← Setup(DBb)

return EDB

Final(b′)

return b = b′

Search(q0, q1)

if LSrch(q0) 6= LSrch(q1)
Abort game

(R, σ, τ ; EDB)
$← Search(KΣ, σ, qb; EDB)

return τ
Update((op0, in0), (op1, in1))

if LUpdt(op0, in0) 6= LUpdt(op1, in1)
Abort game

(σ, τ ; EDB)
$← Update(KΣ, σ, opb, inb; EDB)

return τ

Figure 3.2 – SSEIndΣ,L: Indistinguishability game for the SSE scheme Σ = (Setup,Search,
Update), with the leakage function L = (LStp,LSrch,LUpdt).
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De�nition 3.3 (Indistinguishability-based con�dentiality of SSE). Let Σ be an SSE scheme. For an
adversary A, the advantage AdvSSE-ind

Σ,L,A (λ) of A in the indistinguishability-based con�dentiality game
is de�ned as

AdvSSE-ind
Σ,L,A (λ) =

∣∣∣∣12 − P[SSEIndAΣ,L(1λ) = 1]

∣∣∣∣ .
An SSE scheme Σ is L-adaptively-indistinguishability secure if for any polynomial-time adversary A,
AdvSSE-ind

Σ,L,A (λ) is negligible in λ.

For this de�nition to make sense, as mentioned in [CGKO06], we have to make sure that every
polynomial-time constructible historyH0 has a corresponding polynomial-time constructible history
H1 such that L(H0) = L(H1). Such histories are called non-singular. In the following, unless
mentioned otherwise, we suppose that the histories are non-singular.

We can also extend this de�nition to the case where L is not a deterministic leakage function.
Indeed, we will see that some information leaked by the scheme can depend on some randomness,
for example when using probabilistic padding. In that, we cannot require that two histories have
the same leakage, but instead that the leakage distribution is indistinguishable between the two
histories, i.e. that LStp(DB0) ≈ LStp(DB1) at setup, LSrch(q0) ≈ LSrch(q1) for a search query and
LUpdt(op0, in0) ≈ LUpdt(op1, in1) for an update query.

We could also have extended the de�nition to the case where the leakage of two histories are
computationally indistinguishable, but this would complicate this de�nition a lot, and in this thesis,
we will not use that type of leakage function.

Simulation-based de�nition. The simulation-based security de�nition states that an execution
of the SSE protocols, more exactly its transcripts, is computationally indistinguishable from a
simulated execution which only uses the leakage, and, in particular, does not use the secret key.

For this de�nition, we use the real-world versus ideal-world paradigm, as in the MPC litera-
ture [Gol04]. Two games are constructed, SSEReal and SSEIdeal. In the real game the adversary
chooses a database DB and gets back EDB. Then, it adaptively runs Search and Update protocols
on inputs of its choice, and is given the transcripts of these protocols. The Final call simply forwards
the bit b output by the adversary. In the ideal game, these transcripts are generated by a simulator
S, an e�cient algorithm, helped by the outputs of the leakage function. Finally, the scheme will be
secure if no e�cient adversary can distinguish between the real and the ideal games. Both games
are described in Figure 3.3.

De�nition 3.4 (Simulation-based con�dentiality of SSE). Let Σ be an SSE scheme. For an adversaryA
and a simulator S, the advantage AdvSSE-sim

Σ,S,L,A(λ) of A in the indistinguishability-based con�dentiality
game is de�ned as

AdvSSE-sim
Σ,S,L,A(λ) =

∣∣∣P[SSERealAΣ(1λ) = 1]− P[SSEIdealAΣ,S,L(1λ) = 1]
∣∣∣ .

An SSE scheme Σ is said to be L-adaptively-semantically secure if for any polynomial-time adversary
A, there exists a polynomial-time simulator S such that AdvSSE-sim

Σ,S,L,A(λ) is negligible in λ.

The intuition behind this de�nition, is that, because the real world is indistinguishable from the
ideal world, an adversary running an L-adaptively-semantically secure SSE scheme Σ cannot learn
more information than what is leaked.

In most SSE simulation-based con�dentiality proofs of this thesis, and more generally in the
searchable encryption literature, the simulator will not depend on the adversary A (the simulator is
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SSERealΣ

Init(DB)

(EDB,KΣ, σ)
$← Setup(DB)

return EDB

SSEIdealΣ,S,L
Init(DB)

EDB
$← S(LStp(DB))

return EDB

Search(q)

(R, σ′, τ ; EDB)
$← Search(KΣ, σ, q; EDB)

if R 6= ⊥
σ ← σ′

return τ

Search(q)

τ
$← S(LSrch(q))

return τ

Update(op, in)

(σ′, τ ; EDB′)
$← Update(KΣ, σ, op, in; EDB)

if σ′ 6= ⊥
σ ← σ′, EDB← EDB′

return τ

Update(op, in)

τ
$← S(LUpdt(op, in))

return τ

Figure 3.3 – SSE security games SSEReal (left) and SSEIdeal (right) for honest-but-curious adver-
saries.

universal): we could permute the quanti�ers on A and S in the security de�nition. In particular, we
will not use complex proofs tools such as adversary rewinding. However, the de�nition, as written
above, does not prevent this.

Relations between indistinguishability-based and simulation-based de�nitions. It has
been shown in [CGKO06], that, in the non-adaptive setting, the two security de�nitions are equiv-
alent (with a tight reduction). However, this is not true against an adaptive adversary, although
simulation-based security implies indistinguishability-based security in general.

In particular, the separation is strict when we are not in the random oracle model, and when the
search tokens are succinct (their size does not depend on the size of the database, on the number of
documents, nor on the number of distinct keywords, only on the security parameter). Chase and
Kamara show in [CK10, Section 4, Remark 1] that a SSE scheme that is simulation-based-secure in
the standard model must have search tokens essentially as large as the number of documents. As we
will see in the following, this limitation does not hold in the ROM, nor does it hold in the standard
model with an indistinguishability-based de�nition. Actually, some existing constructions (e.g. the
ones in [CGKO06; CJJ+13]) are adaptively secure in the ROM following De�nition 3.4, and can be
easily shown secure against adaptive adversary in the standard model, according to De�nition 3.3.
These schemes have succinct tokens (their size only depend on the security parameter), and hence
cannot be simulation-secure in the standard model, showing a strict separation between the SSE
con�dentiality security de�nitions in the standard model.

3.1.3.3 Malicious Adversaries

Unfortunately, the previous games do not capture an adversary who tries to get additional informa-
tion by deviating from the protocols. This is particularly important for schemes whose protocols
use more than a single round-trip, e.g. ORAM-inspired constructions such as in [SPS14; GMP16]. A
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Init(DB0,DB1)

if LStp(DB0) 6= LStp(DB1)
Abort game

b
$← {0, 1}

(EDB,KΣ, σ)
$← Setup(DBb)

return EDB

Final(b′)

return b = b′

Search(q0, q1)

if LSrch(q0) 6= LSrch(q1)
Abort game

(R, σ, τ ; EDB)
$← SearchC(KΣ, σ, qb; EDB)↔ A

return τ
Update((op0, in0), (op1, in1))

if LUpdt(op0, in0) 6= LUpdt(op1, in1)
Abort game

(σ, τ ; EDB)
$← UpdateC(KΣ, σ, opb, inb; EDB)↔ A

return τ

Figure 3.4 – Generalized security game SSEInd capturing malicious adversaries. The notation↔ A
represents interactions with the adversary.

single round-trip scheme secure against honest adversaries is secure against malicious ones because
no adversary can, by construction, in�uence the client’s transcript by providing false or incomplete
responses. To the contrary, when multiple round-trips are involved, the adversary can trick the
client by sending an incorrect message so that the client reveals sensitive information later in the
search or update protocol.

Fortunately, it is quite easy to adapt the security games SSEInd, SSEReal and SSEIdeal to capture
such adversaries. To do so, instead of running both sides of the Search and Update protocols, the
game will run the client-side part of the protocol and let the adversary interact with him for the
server-side part. These modi�cations are described in Figure 3.4 (for the SSEInd game) and Figure 3.5
(for the SSEReal and SSEIdeal games).

SSERealΣ

Init(DB)

(EDB,KΣ, σ)
$← Setup(DB)

return EDB

SSEIdealΣ,S,L
Init(DB)

EDB
$← S(LStp(DB))

return EDB

Search(q)

(R, σ′, τ ; EDB)
$← SearchC(KΣ, σ, q)↔ A

if R 6= ⊥
σ ← σ′

return τ

Search(q)

τ
$← S(LSrch(q))↔ A

return τ

Update(op, in)

(σ′, τ ; EDB′)
$← UpdateC(KΣ, σ, op, in)↔ A

if σ′ 6= ⊥
σ ← σ′, EDB← EDB′

return τ

Update(op, in)

τ
$← S(LUpdt(op, in))↔ A

return τ

Figure 3.5 – SSE security games SSEReal (left) and SSEIdeal (right). The notation↔ A represents
interactions with the adversary.

Note that, if A exactly follows SearchS and UpdateS , respectively for the search and the update
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queries, we end up with the same games as in Section 3.1.3.2. Hence, we will use these generalized
games in the following.

Finally, once the games have been updated, we do not have to modify the security de�nitions
themselves: for the security against malicious adversaries, both De�nition 3.3 and De�nition 3.4
remain valid.

3.1.4 Soundness

The last important security de�nition we will use is about the notion of soundness. As for regular
soundness de�nitions, e.g. for provers, it describes the fact that no adversary can cheat the client,
and make him accept incorrect search results.

To give a proper soundness de�nition, we use the game SSESound de�ned in Figure 3.6. The
game closely follows the game used to de�ne soundness of interactive provers [Gol04]: the client
must not accept an invalid search result. Also, the dynamism of the database raises a di�cult point:
the veri�cation has to be done over the current version of the database, and this one must not
be modi�able undetectably by a malicious server. Hence, SSESound does not apply the update
operation on the database when the client rejects the execution of the Update protocol with the
server.

Init(DB)

(EDB,KΣ, σ)
$← Setup(DB)

return EDB

Search(q)

(V, σ′, τ ; EDB)
$← SearchC(KΣ, σ, q)↔ A

if V 6= ⊥ then
σ ← σ′

if V 6= DB(q) then win← true
end if
return τ

Update(op, in)

(σ′, τ ; EDB)
$← UpdateC(KΣ, σ, op, in)↔ A

if σ′ 6= ⊥ then
DB← Apply(DB, op, in)
EDB← EDB′, σ ← σ′

end if
return τ

Final()

return win

Figure 3.6 – SSESoundΣ: Soundness game for scheme Σ = (Setup,Search,Update).

One could try to interpret the soundness game as a malicious server variant of the correctness
game de�ned in Section 3.1.2. However, it is important to see that the correctness de�nition prevents
the Search or the Update protocols to return ⊥ when the adversary does not behave maliciously,
while the soundness game, in the opposite, ensures that this happens if the adversary tries to cheat.
SSECorr and SSESound are similar-looking games, but are also crucially di�erent in their security
goals.

De�nition 3.5 (SSE Soundness). Let Σ be an SSE scheme. For an adversary A, the advantage
AdvSSE-snd

Σ,A (λ) of A in the soundness game is de�ned as

AdvSSE-snd
Σ,A (λ) = P[SSESoundAΣ(1λ) = 1].

An SSE scheme Σ is sound if for any polynomial-time adversary A, AdvSSE-snd
Σ,A (λ) is negligible in λ.

This de�nition can be seen as a generalization of the reliability de�nition of Kurosawa and
Ohtaki [KO12]: in that paper, the authors study the case of single round-trip constructions (also
static ones, but they later extended their de�nitions to the dynamic setting in [KO13]).



48 Chapter 3 Basics of Searchable Encryption

3.2 Leakage in Searchable Encryption

Now that we have a formal security de�nition using the notion of leakage, we can study it more
thoroughly. This section explains how we can compare the leakage of di�erent schemes — and
gives a formal de�nition to “leaking less than” — describes a few commonly encountered leakage
components, and shows that the absence of leakage implies the ine�ciency of the searchable
encryption scheme.

3.2.1 An Order Relation over Leakage Functions

We want to give a formal de�nition to the proposition “L1 leaks less than L2”. By that, we mean
that L1 gives less information about the database and the queries to the simulator than L2, or, said
otherwise, that every information given by L1 can be inferred from L2. This can be formalized by
the fact that L1 is a function of L2: a function information-theoretically compresses the information,
or returns the same information.

De�nition 3.6 (The order � on leakage functions). Let L1 = (LStp1 ,LSrch1 ,LUpdt1 ) and L2 =

(LStp2 ,LSrch2 ,LUpdt2 ) be two leakage functions. We say that L1 leaks less than L2, denoted by L1 � L2

if and only if, there exists a triple of stateful polynomial-time algorithms T = (T Stp, T Srch, T Updt),
such that, for any database DB and sequence of queries (r1, . . . , rn),

LStp1 (DB) = T Stp ◦ LStp2 (DB),

∀1 ≤ i ≤ n,LSrch1 (ri) = T Srch ◦ LSrch2 (ri) if ri is a search query,

and LUpdt1 (ri) = T Updt ◦ LUpdt2 (ri) if ri is an update query.

This is also denoted by L1 = T ◦ L2.

In other words, L1’s output is simulatable from L2’s output. It is clear that � is re�exive and
transitive, but not anti-symmetric, and thus is a preorder. We can de�ne the equivalence relation
associated with this preorder :

De�nition 3.7. The leakage functionL1 is equivalent toL2 (denotedL1 ' L2) if and only ifL1 � L2

and L2 � L1

A nice application of this relation is given by the following claim : we only have to prove security
for the smallest leakage function.

Proposition 3.1. Let L1 and L2 be two leakage functions such that L1 � L2. If Σ is a L1-adaptively-
secure SSE scheme then Σ is L2-adaptively-secure.

Proof. Let A be an adversary, and T such that L1 = T ◦ L2. As Σ is L1-adaptively-secure, there
exists S such that AdvSSE-sim

Σ,S,L1,A(λ) ≤ negl(λ). If S′ = S ◦ T , i.e. S′Stp = SStp ◦ T Stp for the setup,
S′Srch = SSrch ◦ T Srch for a search query, and S′Updt = SUpdt ◦ T Updt for an update query, then

AdvSSE-sim
Σ,S′,L2,A(λ) = AdvSSE-sim

Σ,S◦T ,L2,A(λ) = AdvSSE-sim
Σ,S,T ◦L2,A(λ) = AdvSSE-sim

Σ,S,L1,A(λ) ≤ negl(λ) .

3.2.2 Commonly Encountered Leakage

The leakage of searchable encryption often consists of similar elements, which we will describe in
this section.
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Response hiding and response revealing schemes. First of all, schemes may leak the result set
itself. This leakage can be caused by the scheme itself (when the results of the search are transmitted
in the clear to the client), or by the fact that the client, upon the receipt of the results, accesses the
matching documents stored on the server, without relying on an access-pattern-hiding protocol,
e.g. ORAM.

In the literature, the two settings are however clearly separated: schemes explicitly revealing
the results are called response revealing. In the opposite, schemes whose results are kept encrypted
when sent to the client are called response hiding.

Also, note that a response revealing scheme, because it leaks the results, also leaks very useful
information for a statistical attack against the queries, such as the number of co-occurrences (cf. the
next section).

Size of the database, number of distinct keywords, result count . . . The server will always
see the size of the encrypted database, as he stores it. Hence, unless the database is padded by a
massive number of fake entries, unrelated with the number of real entries, he will learn the number
of document/keyword pairs N in the dataset.

Similarly, one element that is leaked by all e�cient construction is the number of results of a
search query. Unless the result set is padded, the server will learn the number of matches of a query,
and will be able to use this information to retrieve the queried keyword (cf. next section).

One less common leakage is the number of unique keywords in the database. Some schemes
(often dynamic ones) store an array of keyword-indexed elements on the server, to avoid storing in
on the client (e.g. [CJJ+14] or the schemes presented in Sections 4.5,5.4,4.6, and 6.3), leaking by the
same the number of di�erent keywords of the database. To this date, this leakage is not considered
harmful, as no attack makes use of it.

Repetition of queries. Another type of information that the schemes not based on generic tools
(FHE, ORAM, . . . ) leak is the repetition of some queries. Indeed, in many schemes, some of the tokens
sent by the client to the server, during either the search or the update protocol, are deterministically
generated, e.g. with a PRF. As a consequence, if a token sent to the server during a search query
is generated using only the queried keyword, he will immediately see if this query is repeated.
Similarly, a construction that does not hide the access pattern of updates will often leak the repetition
of updated keywords.

This leakage can be formally de�ned as follows. The leakage function L will keep in its state the
query list Q: the list of all queries issued so far, and whose entries are (i, w) for a search query on
keyword w, or (i, op, in) for an op update query with input in. The integer i is a timestamp, initially
set to 0, and is incremented at each query. The search, update and query patterns, respectively
denoted sp(x), up(x), and qp(x), are then de�ned as

sp(x) = {j | (j, x) ∈ Q} (only matches search queries)
up(x) = {j | (j, op, in) ∈ Q and x refers to in} (only matches update queries)
qp(x) = {j | (j, x) ∈ Q or (j, op, in) ∈ Q and x refers to in} (matches both).

The search pattern of the keyword w corresponds to the list of search queries’ timestamps whose
searched keyword was w. The update pattern of w is the list of timestamps of queries corresponding
to the update on w. The query pattern of keyword w is the list of queries involving w, both for
search and update.
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Keyword’s history. One last important element when studying the leakage of (dynamic) search-
able encryption schemes is what we call the history of a keyword. Many dynamic schemes leak the
point in time when a document matching a keyword was inserted, without leaking the query or
the update pattern. We need a way to formalize such leakage, and it is the point of the keyword’s
history (not to be confused with the database and query history, introduced in Section 3.1.3.1).

The function Hist(w) outputs the list of all updates on keyword w: each element of the list is
a tuple (u, op, ind) where ind is the updated index, op the operation, and u the timestamp of the
update. For completeness, we prepend Hist(w) with the set DB0(w) of documents matching w
in the initial database, the database used as input of the Setup algorithm. As an example, if there
are three documents Dind1 , Dind2 and Dind3 matching w, such that Dind1 was in the initial dataset,
Dind2 was inserted at update 3, Dind3 at update 7, and then Dind2 was deleted at update 42, Hist(w)
will be [(ind1), (4, add, ind2), (7, add, ind3), (42, del, ind2)]. Formally, Hist(w) can be de�ned as

Hist(w) = [DB0(w), {(j, op, ind)|(j, op, in) ∈ Q and (w, ind) appears in in}].

We also denote AddDB(w) the list of documents historically added to DB matching keyword w,
in the order of insertion. In particular, it includes documents that have been added and later deleted,
or even documents that have been added twice:

AddDB(w) = [ind | (u, add, (w, ind)) ∈ Q] , ordered according to u.

We will often have schemes whose search complexity on w is linear in aw , the number of inserted
entries whose keyword is w:

aw = |AddDB(w)| = |{(u, add, (w, ind)) ∈ Q}| .

In Chapter 5, we will also use two more leakage components. We defer the explanation of why
these are important to that chapter, but mention them here already, for completeness. The �rst,
the timestamped result set TimeDB(w) of w is the list of all documents matching w, excluding the
deleted ones, together with the timestamp of when they were inserted in the database. Formally,
TimeDB(w) can be constructed from the query list Q as follows:

TimeDB(w) =
{

(u, ind) | (u, add, (w, ind)) ∈ Q and ∀u′ > u, (u′, del, (w, ind)) /∈ Q
}
.

In particular DB(w) can be reinterpreted from TimeDB(w):

DB(w) = {ind|∃u s.t. (u, ind) ∈ TimeDB(w)} ∪ DB0(w).

Note that TimeDB is completely oblivious to any document added to DB(w) and later removed,
including any related addition or deletion update and their timestamp; but retains all other informa-
tion.

Finally, the deletion history DelHist(w) of w is the list of timestamps for all deletion operations
on keyword w, together with the insertion timestamp of the entry each deletion removes. Formally,
DelHist(w) is constructed as:

DelHist(w) =
{

(uadd, udel) | ∃ind s.t. (udel, del, (w, ind)) ∈ Q and (uadd, add, (w, ind)) ∈ Q
}
.



3.2 Leakage in Searchable Encryption 51

3.2.3 E�ciency Implies Leakage

One crucially important question about searchable encryption is the one of the tradeo� between the
security of constructions and their performance. We would like to design e�cient schemes with the
best possible security, or, symmetrically, design highly secure schemes with the best performance.

In the next section, we will see that the leakage can be very e�ciently used to break the con�-
dentiality of queries or of the database. In particular, legacy-compatible constructions are not very
secure, although being very e�cient (asymptotically as e�cient as unencrypted databases). In this
section, we will see that some minimal leakage is absolutely necessary to achieve even reasonable
performance.

In almost every construction, except for the ones based on ORAM, the search pattern is leaked:
the server learns the repetition of search queries. One can wonder if the cost of ORAM is necessary
to hide the search pattern.

We can actually show a result (Theorem 3.2) similar to the ORAM lower bound of Goldreich and
Ostrovsky [GO96], adapted to the setting of searchable encryption. Before stating this result, we
introduce a few notations. Let Lsp be the leakage function (for static schemes) such that

LStpsp (DB) = (N,K),

LSrchsp (w) = nw.

To do so, we could write a simple reduction from ORAM to SSE (i.e. implement an ORAM protocol
from a search-pattern-hiding SSE scheme), yet this would only o�er us a lower bound in logK on
the update computational complexity, while we are looking for something in the order of nw logN
(the performance of an SSE scheme naively implemented using ORAM).

There are still subtle di�erences with the ORAM lower bound, in particular in the way it will
be proven. Namely, suppose that the �rst query matched n1 entries. If the second query matches
n2 6= n1 entries, the adversary will immediately learn that the queries are di�erent, and hence that
the result entries are di�erent. Yet, if n2 = n1, this is not true anymore, and we have to hide the
possible repetition of the �rst query in this case. Similarly, the server already knows that he will
have to access at least nw di�erent entries during a search query on w: we do not have to hide this
information. Also, as we are only interested in the result set, not in the result order, we might be
able to batch some accesses.

Hence, we will have to consider the number of entries that have been previously matching a
search query, with a small caveat: for the i+ 1-th search query, the query being done on keyword
w, we are only interested in entries matching a keyword in the set {wj |1 ≤ j ≤ i and nwj 6= nw},
i.e. the set of previously searched keywords matching a number of documents di�erent from the one
of w. Hence, for a partial history Hi = (DB, w1, . . . , wi), we denote by N(Hi, w) this quantity, and

N(Hi, w) = |DB| −
i∑

j=1
|DB(wj)|6=|DB(w)|

|DB(wj)|.

Theorem 3.2. Let Σ be a (static) SSE scheme that is L-indistinguishably secure, with L � Lsp, with
a client state σ of size |σ|. Then the overall computational complexity of the Search protocol (the sum
of the computational complexity for the client and the server) for a keyword w matching nw documents,
after the execution of the history H is

Ω

 log
(
N(H,w)
nw

)
log |σ| · log log

(
N(H,w)
nw

)
 .
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The proof will be based on similar ideas to the ORAM lower bound result of [GO96]. We will
see that, in some sense, the log log factor is an artifact of the proof. The case of the log

(
N(H,w)
nw

)
expression instead of nw logN is a bit more subtle.

We start the proof with the following lemma, which is an adaptation of the ORAM lower bound
to the searchable encryption setting.

Lemma 3.3. Let Σ be a (static) SSE scheme that is L-indistinguishably secure, with L � Lsp. Suppose
that the Search algorithm uses at most b memory blocks to run the query on w (b can depend on the
history). Then, the computational complexity of the search protocol is

Ω

 log
(
N(H,w)
nw

)
log b(b+ 2)

 .

Proof. Without loss of generality, we can suppose that the adversary only gets to see the read (and
write) accesses to the encrypted database generated by the search protocol: this will only reduce his
capabilities. We also only consider a non-adaptive attacker who chooses two �xed histories. In this
setting, the SSE indistinguishability game can be modeled as follows:

• a player, who can hold at most b balls, makes (probabilistic) accesses to the encrypted database
to answer the sequence of t search queries corresponding to the keywords (w1, . . . , wt) on
the database DB;

• an observer, who gets to see the accesses.

The observer/adversary will win the game if he is able to distinguish the execution of two search
sequences (w1, . . . , wt) and (w′1, . . . , w

′
t), respectively on the databases DB and DB′ such that

|DB| = |DB′| and |DB(wi)| = |DB′(w′i)| for i = 1, . . . , t.
The encrypted database is modeled as N atomic entries, each encoding a document/keyword

pair of the dataset, equivalent to the balls in the ORAM lower bound proof of Goldreich and
Ostrovsky [GO96]. These entries are stored in non-transparent cells holding a single entry. At any
time the player accesses a cell, he can either fetch the entry residing in this cell, place an entry in
it, or do nothing. The observer will see that the player accessed this cell, but not what he just did
with it. It is important to note that it is not because the scheme is static that the encrypted database
cannot be modi�ed by the Search algorithm: the fact that the scheme is static only implies that it
does not support Update operations.

To answer these t search queries, the player will make a sequence of q visible accesses V =
(v1, . . . , vq), observable by the adversary. For each accesses vi, the player will perform a hidden
action hi, which the observer cannot see. As mentioned before, the player can take an entry
from the cell, place an entry in the cell or do nothing. In particular, there are b + 2 possible
actions (b ‘placing’ actions, the ‘taking’ action, and the ‘nothing’ action). This action sequence
(v1, h1), . . . , (vq, hq) satis�es the search queries sequence (w1, . . . , wt) if and only if there exists
a sequence 1 = j0 ≤ j1 ≤ · · · ≤ jt ≤ q such that for every i-th search request, the player
has held every entry corresponding to the entries (wi, ind), for ind ∈ DB(wi), after the actions
(vji−1+1, hji−1+1), . . . , (vji , hji). We note δqi = ji − ji−1 + 1.

Let us focus on the i-th search request. As the player holds at most b entries, a �xed sequence
(vj , hj), . . . , (vj+δq, hj+δq) can satisfy at most bδq di�erent search queries (a very large upper bound
on the number of entries that the player can fetch in δq actions). Also, each δq-long visible accesses
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sub-sequence (vj , . . . , vj+δq) may be coupled with (b+ 2)δq hidden action sequences. In the end,
we can say that each sub-sequence δVi of length δqi can satisfy at most bδqi(b+ 2)δqi search queries.

Finally, as the search pattern is hidden, but the size pattern is revealed, the number of search
queries matching n documents in the database DB after the search queries w1, . . . , wi is(

N(H,w)

n

)
,

where H = (DB, w1, . . . , wi) is the history of previous executions. The reason for this non-trivial
expression is �rst that the order in which the entries are fetched does not matter (we are only
interested in the result set), then that the player does not have to hide that he does not access the
entries that were previously fetched for searches matching a di�erent number of results. Namely,
after the execution of the history H , there are exactly N(H,w) non-touched entries matching
n 6= nw entries. As the i-th sub-sequence Vi, of length δqi must satisfy N(Hi−1, wi) possible search
queries, we have

bδqi(b+ 2)δqi >

(
N(Hi−1, wi)

nwi

)
,

and, as a consequence,

δqi = Ω

 log
(
N(Hi−1,wi)

nwi

)
log b(b+ 2)

 .

Note that the expression
(
N(Hi−1,wi)

nwi

)
might look a little arti�cial: we suppose that the player will

access the matching entry in any order, while, in practice, he will chose one and never deviate from
it, pledging for a term N(Hi−1,wi)!

nwi !
instead of the binomial expression. There is a little caveat to this

remark, though: the entries corresponding to the documents matching the search query will have
to be (randomly) relocated once they have been accessed (leaking the search pattern otherwise),
and the player can optimize the number of visible accesses he makes, which he could not do with
ORAM — remember that it is not a problem to leak that di�erent entries/balls were accessed during
a search query as this information is obvious.

In the main proof of the theorem, we will also use the following technical lemma.

Lemma 3.4. Let C > 8, D ≥ 0 and f : [D + 1,+∞)→ [1,+∞) de�ned as

f(x) = max

{
x−D, C

log x(x+ 2)

}
.

Then for all x ∈ [D + 1,+∞),

C

4 log(D + 2) · logC
− 1 < f(x).

Proof. This lemma can be shown using simple analysis. We start by a simple variable change:

max
x∈[D+1,+∞)

{
x−D, C

log x(x+ 2)

}
= max

x∈[1,+∞)

{
x,

C

log(x+D)(x+D + 2)

}
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Then, notice that, that, as log is an increasing function,

C

log(x+D)(x+D + 2)
≥ C

2 log(x+D + 2)
=

C

2(log(x/D′ + 1) + log(D′))

where D′ = D + 2. Also, by denoting C ′ = C
2 logD′ , we have that

C

log(x+D)(x+D + 2)
≥ C ′

logD′(x/D
′ + 1) + 1

≥ C ′

logD′(x+ 1) + 1

again, because log is an increasing function. As a consequence

max
x∈[D+1,+∞)

{
x−D, C

log x(x+ 2)

}
≥ max

x∈[1,+∞)

{
x,

C ′

logD′(x+ 1) + 1

}

Let g(x) = max
{
x, C′

logD′ (x+1)+1

}
. Lower bounding f on [D + 1,+∞) is equivalent to lower

bounding g on [1,+∞). Let us separate two cases, whether x ≥ D′ − 1 or x < D′ − 1.
If x < D′ − 1, then logD′(x+ 1) + 1 ≤ 2 and

g(x) ≥ max
{
x,C ′/2

}
≥ C

4 logD′
.

If x ≥ D′ − 1, then logD′(x+ 1) + 1 ≤ 2 logD′(x+ 1) and

g(x) ≥ max

{
x,

C ′/2

logD′(x+ 1)

}
.

Also, as x 7→ x is an increasing function and x 7→ C′

2 logD′ (x+1) is decreasing, the minimum is reached
when x = C′

2 logD′ (x+1) . Finding this minimum is equivalent to �nding x∗ such that h(x∗) = 0 where

h(x) = x− C ′

2 logD′(x+ 1)
= x− C

4 log(x+ 1)

as C ′ = C
2 logD′ . In particular, f(x) ≥ x∗. Note that we are actually only looking for a lower bound

of x∗, not its exact value. Hence, as h is a continuous and strictly increasing function on [1,+∞),
x∗ is the only value on which h annihilates and h(x) ≤ 0⇔ x ≤ x∗. Also, we have that

(x+ 1)− C

4 log(x+ 1)
≤ 0⇒ x ≤ x∗,

Let C ′′ = C/4 and suppose that logC ′′ > log logC ′′ ≥ 0. Then, we directly have that

1

logC ′′
− 1

log C′′

logC′′
=

1

logC ′′
− 1

logC ′′ − log logC ′′
≤ 0,

and for x0 = C′′

logC′′ − 1, we have that (x0 + 1)− C
4 log(x0+1) ≤ 0, and then that x0 ≤ x∗.

To conclude, we just have to check that logC ′′ > log logC ′′ ≥ 0. The last inequality is veri�ed
for C ≥ 8. For the �rst inequality, we have to study t : x 7→ x− log x on the interval [1,+∞). Its
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derivative x 7→ 1− 1
x·ln 2 (where ln is the natural logarithm) is negative on [1, 1

ln 2 ] and positive on
[ 1
ln 2 ,+∞[. Thus, t reaches its minimum for x = 1

ln 2 ≈ 1.443, and

t(x) ≥ t
(

1

ln 2

)
≈ 0.914 > 0.

As a consequence, and because we supposed that C > 8, logC ′′ > 0, and logC ′′ > log logC ′′, we
have that x0 ≥ C

4(logC)−2 − 1 ≥ C
4 logC − 1.

We can conclude the proof of this lemma by stating that

max
x∈[D+1,+∞)

{
x−D, C

log x(x+ 2)

}
≥ min

{
C

4 logD′
,

C

4 logC
− 1

}
≥ C

4 log(D + 2) · logC
− 1

The proof of the theorem is now very easy, using the previous lemmata.

Proof of Theorem 3.2. The memory b used during the execution of the Search protocol can be sep-
arated into two parts. First, there is the client’s state, and then the additional memory b′ used by
either the client or the server to execute the protocol itself: b = |σ|+ b′. Without loss of generality,
we can suppose that the Search protocol touches each of the b′ memory blocks at least once: this is
not true for a block, then the protocol does not need it. Hence, the complexity of the protocol is at
least Ω(b′ ).

By combining this �rst lower bound with Lemma 3.3, we have that the computational complexity
of a search query is

Ω

max

b− |σ|, log
(
N(H,w)
nw

)
log b(b+ 2)


 .

We can immediately conclude using Lemma 3.4.

We can improve this bound if we suppose that
(
N(H,w)
nw

)
is large enough. Indeed, we can show, in

a similar way to Lemma 3.4, that

max

{
x−D, C

log x(x+ 2)

}
>

C

4 log(D + 2) · log logC

if logC/4 > log log logC/4 > 0⇔ C/4 > 2220

⇔ C > 16. Indeed, more generally, for all a ∈ N∗,

max

{
x−D, C

log x(x+ 2)

}
>

C

4 log(D + 2) · log(a)C
if C > 4 ·

a times︷ ︸︸ ︷
22.

. .
20

.

where log(1) x = log x and log(a) x = log log(a−1) x for a > 1. Hence, for any for all a ∈ N∗, and
large enough

(
N(H,w)
nw

)
, the complexity of a search query is

Ω

 log
(
N(H,w)
nw

)
log |σ| · log(a)

(
N(H,w)
nw

)
 .
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This leads us to believe that the log log factor in denominator of the lower bound in Theorem 3.2 is
an artifact of the proof, and that the actual lower bound is

Ω

 log
(
N(H,w)
nw

)
log |σ|

 .

We can also derive an immediate corollary from Theorem 3.2.

Corollary 3.5. The complexity of the �rst query of an SSE scheme, DB being the database, σ the
client’s state, and w the searched keyword is

Ω

(
log
(
N
nw

)
log |σ| · log log

(
N
nw

) ) .
Proof. For the �rst search query, there are no previous request and N(H0, w) = N

It is interesting to see that this lower bound does not hold anymore when the leakage is even
slightly increased. Namely, suppose that besides N , the setup also leaks, for each n ∈ N, the number
Kn of keywords w such that |DB(w)| = n. We can then design a scheme Σ, optimal in terms of
server storage, and whose search complexity for a keyword w is logKnw + nw.

For each n such that Kn 6= 0, Σ initializes an ORAM of size Kn where each block corresponds
to a keyword w such that |DB(w)| = n and stores DB(w). Also, for each keyword w ∈ K , the
client stores nw . Then a search query only consists in reading the block corresponding to the search
keyword w in the ORAM for keywords with nw results. With state of the art ORAM (e.g. [SDS+13a]),
this only requires logKnw + nw operations.

Communication vs computation complexity. Theorem 3.2 states a lower bound on the total
computational complexity of the client and the server during a search query, but does not state
how the work is shared between the two. This is similar to the ORAM lower bound of [GO96], as
explained in [DDF+16]. Indeed, in the setting of [GO96], the server is not allowed to do computations,
so we end up with a lower bound on the bandwidth overhead. But once, the server is allowed to
‘help’ the client, this bandwidth overhead does not hold anymore, but the total number of atomic
operations still has to satisfy the lower bound.

We are exactly in the same case with our SSE lower bound: if the server is supposed to be
completely passive (i.e. act like some basic storage device), our computational lower bound will also
be a communication lower bound. On the other end, the searchable encryption scheme could be
implemented as a garbled RAM program (see [LO13b]) executed by the server on its own: the size
of the search token (i.e. the garbled program) would only depend on the security parameter, and
there would not be any bandwidth overhead, whereas the computational overhead is very high.

3.3 The Locality of Searchable Encryption

Although some searchable encryption schemes are asymptotically optimal in terms of e�ciency,
(e.g. [CGKO06; CJJ+14; Bos16]) in practice, their performance is worse than unencrypted systems by
an order of magnitude, an often poorly scale to very large databases. Indeed, the bottleneck of these
schemes is not the cryptography but the throughput of the external storage where the encrypted
database is stored. Namely, for the search protocol, these schemes make one random access per
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match of the query, while unencrypted databases organize the data so that all the results can be
fetched in a constant number of accesses.

Designing searchable encryption schemes with high storage locality — i.e. a scheme making
a small number of memory accesses during the search protocol — is a major challenge, and is
necessary to make encrypted database scalable. One could argue that using legacy-compatible
construction would solve this problem, but such systems barely provide any security. Also, a
scheme that returns the entire encrypted database upon a search query would have perfect locality
but terrible performance. Finally, Chase and Kamara [CK10] proposed a scheme that has perfect
locality, reads no more information than needed during a search query, but has very large encrypted
databases: the server needs to store K · maxw∈W nw, which can be much larger than N (up to
K ·N ).

Cash and Tessaro actually presented a lower bound on the locality of searchable encryption
schemes in [CT14]: a scheme leaking at most the size of the database, the number of distinct
keywords, the number of documents, the search pattern and the number of results of a search query
cannot be both storage optimal (|EDB| = O(N )), have constant locality (the number of sequential
accesses to the encrypted database) and achieve constant read e�ciency (the amount of data read
during a search query is linear in the number of results).

3.3.1 Locality, Read E�ciency and Overlapping Reads

Here, we quickly recall the de�nitions introduced in [CT14] so that we can formally state the lower
bound result.

De�nition 3.8 (Read Pattern). We interpret EDB as a bit string of size M , and EDB[a, b] is the
substring starting by the a-th and ending with the b-th bit. On the server side, the Search(KΣ, w; EDB)
protocol adaptively computes a sequence of intervals ([a1, b1], . . . , [an, bn]) where [a1, b1] depends on
the �rst message of the client, [a2, b2] on previously received messages and on EDB[a1, b1], etc.
The read pattern RdPat(w,EDB) is this sequence ([a1, b1], . . . , [an, bn]) of intervals.

From the read pattern, it is now easy to de�ne the locality.

De�nition 3.9 (Locality). A searchable encryption scheme Σ is r-local (has locality r) if for any λ,
DB and w ∈W, RdPat(w,EDB) consists of at most r intervals when (KΣ,EDB)

$← Setup(1λ,DB).
If r = 1, we say that Σ has perfect locality.

Note that r can depend on λ or on |DB|.

De�nition 3.10 (Read E�ciency). A searchable encryption scheme Σ is c-read e�cient (has read
e�ciency c) if for any λ, DB and w ∈ W, RdPat(w,EDB) consists of intervals of total length at
most c · |BinEnc(DB(w))| bits, where BinEnc(DB(w)) is the binary representation of DB(w), i.e. the
concatenation of all indices represented as bit strings. Without loss of generality, we can suppose that
|BinEnc(DB(w))| = `|DB(w)|, as we encode indices over ` bits (cf. Section 3.1.1).

The lower bound of Cash and Tessaro uses a restricted version of the read e�ciency: they look at
the number of new bits read during the search query. Hence, they de�ne the notion of overlapping
reads, formalized as follows.

De�nition 3.11 (Overlapping Reads). A searchable encryption scheme Σ has α-overlapping reads if
for all λ, and all DB, the read pattern induced by the search of each keyword in DB has an overlap of
at most α bits with the read patterns of all other (previous or future) keywords (with probability 1 over
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the computation of (KΣ,EDB)
$← Setup(1λ,DB) and the executions of the Search protocol.) When

α = 0, we say that Σ has disjoint reads.

The value α can be independent of N , but may depend on λ or on K , e.g. when Σ has to read a
keyword-indexed table storing meta-data.

3.3.2 A Lower Bound on the Locality of Searchable Encryption

Now that all these notions are de�ned, we can formally state the negative result of Cash and Tessaro.
However, their result stands only for a minimal level of leakage: legacy-compatible constructions
using deterministic encryption can regroup entries and achieve perfect locality, read e�ciency and
server storage. Hence, we de�ne Lloc as

LStploc (DB) =

(
N,K,D,max

w∈W
|DB(w)|

)
,

LSrchloc (w) = DB(w).

Theorem 3.6 (Theorem 4.1 of [CT14]). Let Σ be a L-indistinguishably secure searchable encryption
scheme, with L � Lloc. If Σ has locality r and α-overlapping reads, then it has ω

(
|BinEnc(DB)|
r(α+1)

)
server

storage. In particular, if Σ has perfect locality, perfect read e�ciency, and disjoint reads, then Σ has
ω (|BinEnc(DB)|) server storage.

The proof of this theorem in [CT14] only requires the non-adaptive security of Σ. Also note that
the last case — perfect read e�ciency and disjoint reads — implies that Σ leaks the search pattern sp.

The intuition behind this result is that, with a perfectly local and read e�cient scheme, after a
sequence of searches, the server can look which parts of the encrypted database were accessed and
not accessed. Hence, if there is a keyword, not previously queried, and matching many documents,
the server will see a large interval of untouched bits in EDB, which is not the case (in average) if
there only are keywords with a small number of matches. In particular, the server would be able
to distinguish these two kinds of histories, despite them having the same Lloc leakage. We refer
to [CT14] for the complete proof and the extension to the more general case of non-perfect locality
and read e�ciency.

3.3.3 Constructions with Improved Locality

Besides their lower bound result, Cash and Tessaro present a construction of a static SSE scheme
with improved locality, namely O(logN ) locality, perfect read e�ciency and O(N logN ) server
storage. The lower bound of Theorem 3.6 was later shown (essentially) tight by Asharov et al.
in [ANSS16]. In this work, the authors present three constructions with perfect read e�ciency, based
on allocation algorithms. The �rst two schemes have optimal storage, and have read e�ciency of,
respectively, O(logN · log logN ) and O(log logN · log log logN ), the second one assuming that
keywords do not match more than N1−1/ log logN documents. The last scheme is an improvement
over the Cash and Tessaro construction which achieves perfect locality and read e�ciency at the
cost of O(N logN ) server storage.

The practicality of these constructions was studied by Demertzis and Papamanthou in [DP17].
Despite being asymptotically e�cient, the perfectly local constructions of Asharov et al. are not better
in practice than the non-local Πbas scheme of [CJJ+13]. The authors hence present new constructions,
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withO(L) locality, O
(
N1/s/L

)
read e�ciency andO(N · s) storage, hence asymptotically worse

than the �rst two schemes of [ANSS16], but that perform practically better by an order of magnitude.
The �rst dynamic searchable encryption schemes with improved locality have also been presented

in [DP17]. Their idea is to build dynamic SE from static schemes by perpetually rebuilding the
encrypted database, and including the newly inserted records. More precisely, the encrypted database
consists of levels of exponential size — level i contains 2i records — each level being an encrypted
database of a static scheme. Initially, all the levels are empty. When a new item is inserted in the
database, either level 0 is empty, and the entry is encrypted and placed there, or it is already full, and
then the client downloads and empties the �rst ` levels, ` being the �rst empty level, and encrypts
these 2` − 1 entries plus the newly inserted entry into the `-th level. This idea is borrowed from
the hierarchical-ORAM literature (e.g. [GM11; GMOT12]) and was already applied to searchable
encryption in [SPS14]. It is fully described in Section 4.4.

3.4 Leakage Abuse Attacks

In Section 3.1.3, we saw security de�nitions for the con�dentiality of searchable encryption based
on leakage functions. The semantic of these de�nitions is that nothing beyond the leakage is learned
by the server. Yet, this does no prevent the leakage function itself to leak a lot of information.

For example, we could de�ne the leakage function Lall as follows:

LStpall (DB) = DB,

LSrchall (q) = q,

LUpdtall (op, in) = (op, in).

This leakage function leaks everything, and any searchable encryption scheme is Lall-adaptively-
semantically secure.

Understanding the impact of the leakage of a scheme is hence very important, and building a
hierarchy of strictly increasing leakage functions — in the sense of De�nition 3.6 — is crucial.

At the same time, we must be able to assess the practical security of the leakage functions, which
is slightly di�erent. Namely the leakage class will tell us which leakage functions are equivalent in
general, while devising attacks breaking the con�dentiality of schemes only from its leakage will
show that this particular leakage function might leak more than expected in some cases. We will see
that this is particularly the case for active attacks, where the adversary can insert some known or
chosen documents in the database. Also, in many cases, additional information about the database
(e.g. the distribution of keywords) can help the server to recover some information about the queried
keywords. The next two sections present some results relative to these leakage-abuse attacks against
single-keyword searchable encryption. We do not focus here on legacy-compatible constructions, as
this study main focuses on ad hoc schemes. We just underline that many of those constructions are
prone to frequency analysis, as described by Naveed, Kamara and Wright [NKW15].

Note that in Chapter 7, we will analyze these leakage abuse attacks in more details.

3.4.1 Attacks Based on Keyword Frequency

The �rst kind of attacks that have been developed by the community is the set of attacks based on
keyword frequency associated with prior knowledge about the database. This line of work started
with a paper by Islam, Kuzu, and Kantarcioglu [IKK12]. The adversary uses the known distribution
D of the co-occurrence matrix of the targeted set of keywords. This matrix maps to each pair of
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keywords the number of documents in which both keywords appear. From the observation of the
documents access pattern (the list of result indices), the adversary builds a co-occurrence matrix
that follows the distribution D, up to rows and columns permutation. Using simulated annealing,
he will �nd this permutation, which will be the match between queries and keywords. The issue
with this attack is that it does not scale well with the number of keywords, as shown by Cash et al.
in [CGPR15].

The count attack of [CGPR15] also uses a co-occurrence matrix, but uses it only to leverage some
prior knowledge issued from the uniqueness of the number of results for some keywords: there
are some keywords w such that no other keyword w′ match the exact same number of documents.
Hence, for the full or partial knowledge of the database, the adversary is able to decrypt the queries
keyword. For this initial knowledge, using co-occurrence information, as in [IKK12], the adversary
will be able to retrieve the queries whose result count is not unique.

3.4.2 File Injection Attacks

All the previously described attacks are both passive and non-adaptive: they do not require the
attacker to interact with the encrypted database, or with the client in general. In particular, they do
not use the new attack means introduced by dynamic schemes, such as inserting speci�cally crafted
documents in the database.
File injections attacks do exactly that. Formally speaking they were introduced by Cash et al.

in [CGPR15] to attack legacy-compatible schemes. They were used against ad hoc schemes by
Zhang, Katz, and Papamanthou [ZKP16]. The basic idea of their attack is that the server can insert
documents with half of the keywords in W. Then, the attacker will observe which of these inserted
documents match the search query issued by the client (e.g. using the access pattern of the search
algorithm). Each of the crafted documents brings one bit of information (whether the query matches
the document or not), and using a standard binary search technique, the server can easily �nd
which keyword was found. Although, some countermeasures exist (such as limiting the number of
keywords by documents), some adaptive variants are extremely powerful — we will present these
variants and countermeasures in Chapter 4.
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Forward Privacy 4
D

ynamism is a must-have feature for practical searchable encryption constructions: being
able to add new documents to a dataset once it already has been encrypted and outsourced
is an essential functionality that must be implemented by state-of-the-art schemes. Un-

fortunately, as it is often the case in cryptography, new features imply new attack means for the
adversary. Namely, in a static database setting, it is hard for an adversary to in�uence the dataset
a priori, before he gets to see its encryption or any search query. In the contrary, in the dynamic
setting, he might make the client insert in the database documents that would help him to get
information about future or even past search queries.

In this chapter, we will study these �le injection attacks, their consequences on the security of
dynamic searchable encryption schemes, and ways to mitigate them. In particular, we will de�ne
the notion of forward privacy, which ensures that updates to the database are oblivious, and leak no
information about the keywords matching the modi�ed documents, thwarting the most devastating
versions of the �le injection attacks. We will see that forward privacy comes at an unavoidable cost
by presenting heuristics and a lower bound on the e�ciency of forward private schemes. Then,
we describe the ideas behind the �rst scheme that was designed to achieve this notion of forward
privacy, SPS, which uses techniques closely related to Oblivious RAM, and hence inherits their
ine�ciencies. Finally, we will construct two forward private schemes, which overcome these issues,
Σoφoς and Diana, respectively from trapdoor permutations and range-constrained pseudorandom
functions, the latter being constructed from regular pseudo-random functions.

Most of the results of this chapter have been published in [Bos16] and [BMO17].
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4.1 File Injection Attacks

As explained in Section 3.4.2, �le injection attacks aim at breaking the con�dentiality of the user’s
queries by injecting adversarially-controlled documents in the database. The �rst of these attacks
was presented by Cash et al. in [CGPR15], but only targeted legacy-compatible encrypted databases,
with much more leakage than what we usually consider in this thesis.

Zhang et al. [ZKP16] improved this attack against any dynamic scheme leaking, during a search
query, the results of the search or when the matching documents have been inserted in the database.
Their idea is that, if the adversary inserts a �le containing half of the keyword set in the database, by
checking if a search query matches this document or not, he will learn one bit of information about
this keyword (which half of the keyword set the queried keyword belongs to). Note that, it su�ces
that the scheme leaks when the documents matching a query have been inserted (e.g. TimeDB(w)
— see Section 3.2.2) for the server to get this bit of information.

By iteratively applying this technique, using a binary search algorithm, the adversary will be able
to fully determine the queried keyword. More precisely, as described in [ZKP16], the attacker will
generate d = dlogKe documents F1, . . . , Fd such that Fi contains all the keywords whose i-th bit
is set (we suppose that there is a mapping between W and {1, . . . ,K}).

This leads to a very e�cient attack against a huge class of schemes (namely every scheme not
based on ORAM), able to recover any query just by inserting logK documents. This attack has a
drawback though: it requires inserting documents with K/2 keywords, which can be very large.
The client might upper bound the number of keyword in a document by a parameter T , called the
threshold parameter in [ZKP16]. This forces the attacker to increase a lot the number of documents
necessary to recover any query. Indeed it grows from logK to K

2T log 2T . It is also quite easy to
see that this is essentially optimal without any additional knowledge on the keyword distribution:
inserting less documents would result in information incompleteness for some possible queries.

Now suppose that the scheme, when a new document is inserted, also leaks whether this new
document matches a previous search query or not. The attacker can now mount his attack adaptively,
in order to recover a previous query (the previous attack worked non-adaptively on queries issued
after the �le injections). In particular, it is only necessary to inject KT + log T documents for the
attack to succeed. Again, it is easy to see that this is information-theoretically optimal when the
attacker has no prior knowledge on the keywords and their distribution.

However, when he does and in particular when he knows the keyword distribution, the attacker
can improve a lot the e�ciency of the attack. Namely, as shown in [ZKP16], he only needs to insert
log 2T documents to adaptively recover a previous query, by reducing the number of candidates to
2T using the number of matches of the query and the keyword frequency in the database.
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These adaptive versions of the �le injection attacks are e�cient exactly because the insertions
leak some information about the keywords contained in the new documents. To avoid such problem,
we absolutely need the updates to be oblivious to the content of the documents, i.e. to the keywords.
We call this property forward privacy.

Such behavior is also interesting in terms of functionality because it allows for the secure online
build of the encrypted database. Indeed, the generic de�nition of SSE suppose that the encryption of
the dataset, during the Setup algorithm, happens on the client side, and hence that, at some point,
the client had enough local storage to hold the entire encrypted database (before sending it to the
server). With forward privacy, this will no longer be necessary, as the encryption of the entire
database can be done using multiple calls to the Update protocol, which will leak no information
about the encrypted documents.

4.2 De�nition of Forward Privacy

The notion of forward privacy for searchable encryption was introduced by Stefanov et al. in [SPS14].
The scheme the authors propose in that paper has the leakage LSPS, de�ned as follows:

LSrchSPS (w) = (sp(w),DB(w),AddDB(w))

and LUpdtSPS (op, ind,w) = (op, ind, |w|),

where op ∈ {add, del}, ind is the index of the added (or deleted) document, and w is the list
of keywords in this document, and AddDB(w) is the list of documents historically added to w
(cf. Section 3.2.2).1 However, no generic de�nition of forward privacy was given in [SPS14].

Informally, regarding the previous section, we want that an update does not leak any information
about the updated keywords. In particular, the server cannot learn that the updated document
matches a keyword we previously queried. With that in mind, we can give a formal and generic
de�nition of forward privacy, closely related to the LSPS leakage function. This de�nition covers
non-atomic updates, i.e. batched updates where several documents or several keywords are modi�ed.
Such updates cover the insertion of a new document, or the complete deletion of a document.

De�nition 4.1 (Forward privacy). An L-adaptively-secure SSE scheme Σ is forward private if the
update leakage function LUpdt can be written as

LUpdt(op, in) = L′(op, {(indi, µi)})

where {(indi, µi)} is the set of modi�ed documents paired with the number µi of modi�ed keywords
for the updated document indi, and L′ is a stateless function ( i.e. does not depend on previous queries).

De�ned like that, we immediately have that the SPS scheme is forward private, just from the
form of its leakage function. In practice, we will use a slightly stronger de�nition of forward privacy,
de�ned as follows.

De�nition 4.2 (Strong forward privacy). A L-adaptively-secure SSE scheme Σ is strongly forward
private if the update leakage function LUpdt outputs only the operation and the number of updates:

LUpdt(op, in) = (op, µ).

where µ is the total number of modi�ed keywords.
1Note that, here, LStp

SPS is not de�ned, as, in the designers’ mind, the encryption of the database can be done online, using
the Update protocol.
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Hence, by just examining the leakage function, we cannot state that SPS is strongly forward
private. Yet, in Section 4.5.6, we will see that, by studying its security proof, we can actually show
that SPS is strongly forward private.

In this thesis, (almost) all the forward private schemes will share the same leakage function, that
we denote LFP. Also, unless stated otherwise, we will only consider schemes whose update queries
are insertions or deletions of single document/keyword pairs. This covers most cases as the insertion
(and the deletion) of a full document can be rewritten as iteratively adding (resp. removing) the
corresponding document/keyword pairs in the database.

De�nition 4.3. We de�ne the leakage function LFP as follows:

LStp
FP (DB) = N,

LSrch
FP (w) = (sp(w),Hist(w)),

and LUpdt
FP (op, w, ind) = op,

where (w, ind) is the modi�ed pair. In particular, if the scheme supports batch updates on several
keyword/document pairs, it just leaks the number of updated pairs.

4.3 Constraints Induced by the Forward Privacy

Unfortunately, forward privacy has various downsides in terms of e�ciency. This section explains
that dynamic SSE schemes have to make a tradeo� between storage e�ciency, locality, and security.

4.3.1 Constraints on Storage

First, let us focus on storage. A desirable property of dynamic databases is space reclamation upon
entry deletion. For searchable encryption, it implies that, when a document/keyword pair is removed
from the encrypted index, the logical location of the pair can be marked as empty. Now, suppose an
adversary successively submits a search query for a keyword w, and then a delete query for pair
(ind, w). If the Search protocol does not modify the encrypted database beyond the entries matching
the searched keyword (almost all existing schemes do not), and if the scheme reclaims space, the
adversary will learn that the updated keyword was just searched. Indeed, the deletion algorithm
will have to mark an entry that was just searched to be deleted, and if the search algorithm has
not obliviously re-located this entry, by observing the access pattern of the deletion protocol, the
adversary will see that the same memory location has been accessed twice. The previous example
actually shows that the locations of the encrypted keyword/document pairs before and after the
search query must be completely unrelated for forward private, space-reclaiming scheme, yielding
constructions with security properties close to the ones of resizable Oblivious RAM [MMBC15]. In
particular, one cannot really hope for the existence of a really e�cient scheme with these properties.

4.3.2 Constraints on Locality

As explained in Section 3.3, Cash and Tessaro [CT14] studied the problem of the locality of memory
accesses in SSE. In particular, they showed that one cannot achieve constant locality (a constant
number of memory accesses), with optimal read e�ciency (the server reads a constant number
of bits per matching entry) without increasing the size of the encrypted database beyond Θ(N ).
Their lower bound holds for static schemes, and so applies for dynamic schemes too. Demertzis and
Papamanthou described in [DP17] how to build dynamic schemes with improved locality.
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Here we claim that, for dynamic schemes, locality, update e�ciency and forward-privacy are
irreconcilable notions. First, it is worth noticing that caring about memory locality makes sense
only if the scheme is already e�cient in terms of disk accesses. For example, if a scheme system-
atically updates the encrypted database every time a search is performed (e.g. the ORAM-based
scheme [GMP16]), the rewriting cost will be much higher than the e�ciency improvements due
to increased locality. So without loss of generality, we consider schemes whose Search protocol
does not modify a large portion of EDB. In this case, forward privacy implies that, for an updated
keyword w, the location of the newly inserted tokens is unrelated to the location of already existing
tokens matching w. So, if the whole set DB(w) is not somehow, at least partially, re-written during
the update, no locality optimization is possible for keyword w. Said otherwise, if you want both
forward privacy and locality during search, you have to do some rather large modi�cations of the
encrypted database, either during searches or updates.

It is interesting to notice that a lower bound on the locality of ORAM was shown by Asharov et
al. in [ACN+17]. This lower bound states that a secure N -blocks ORAM, with O (poly(logN ))
locality incurs Ω

(
N1−ε) bandwidth overhead, for any constant ε > 0, even if the server stores

O
(
N2
)

memory, and the client has O(poly(logN )) memory.
A similar lower bound for forward private SSE is to be expected. Yet, forward private SSE has

some important di�erences with ORAM, which can be used to construct a scheme more e�cient
than this ORAM lower bound. First, forward privacy does not prevent the schemes from leaking the
search pattern, i.e. the which queries involved the same keyword w. Also, SSE almost always leaks
the size pattern, and leaking this information has been shown by Asharov et al. to be very useful to
overcome the lower bound, even in an ORAM-like setting (cf. the Range-ORAM and File-ORAM
constructions in [ACN+17]).

In the end, even achieving logarithmic locality for a forward private scheme seems very costly,
in particular in terms of bandwidth overhead during update operations. In Section 4.4, we will
see how to build generically forward private schemes from static schemes, using logN levels of
exponentially increasing size, each level being a static SSE. In particular, if the static SSE construction
has O(f(N)) locality and O(g(N)) read e�ciency, the �nal scheme will have O(f(N) · logN )
locality and O (g(N)) read e�ciency. For example, using the most local SSE construction of
Asharov et al. [ANSS16] as the underlying static scheme, we end up with a forward private scheme
with O(logN ) locality and O(logN log logN ) read e�ciency. This construction generalizes the
dynamic scheme of [DP17].

4.3.3 Constraints on E�ciency

Maybe the biggest constraint incurred by forward private SSE schemes is the constraint on their
e�ciency. Namely, the same way we showed a lower bound on the computational complexity of a
scheme hiding the search pattern in Section 3.2.3 (Theorem 3.2), we can show a lower bound for
forward private SSE schemes. Here, for simplicity, we suppose that the scheme only supports atomic
updates, i.e. updates on single-keyword/document pairs. Note that we can do that without loss of
generality as more general updates can be expressed as a sequence of atomic updates.

Theorem 4.1 (Lower bound on the computational complexity of forward private SSE schemes).
Let Σ be a forward private SSE scheme supporting insertion and deletion of entries in the database.
In particular, the leakage function leaks only L′(op, ind), were L′ is a stateless function. Σ has a
client state of size |σ|. Then, the computational complexity of the Update protocol (when summing the
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contributions of the client and of the server) is

Ω

(
logK

log |σ| · log logK

)
.

Proof. We proceed exactly as for the proof of Theorem 3.2, with a player, able to hold at most b
entries (atomic document/keyword pairs), making accesses to the encrypted database in order to
answer a sequence of t update queries, and an observer who sees these accesses. As we supposed
that the updates are atomic (i.e. are insertions or deletions of single keyword/document pairs), the
sequence of t updates can be written as [(op1, w1, ind1), . . . , (opt, wt, indt)]. The observer will win
the game if he is able to distinguish the execution of this update sequence with the execution of the
update sequence [(op′1, w

′
1, ind′1), . . . , (op′t, w

′
t, ind′t)] such that, for all 1 ≤ i ≤ t,

L′(opi, indi) = L′(op′i, ind′i).

Note that if (opi, indi) = (op′i, ind′i) for 1 ≤ i ≤ t, then the condition clearly holds.
To answer these t queries, the player will make a sequence of q visible accesses V = (v1, . . . , vq),

observable by the adversary, and a sequence of (h1, . . . , hq) of hidden actions hi, which the observer
cannot see. As before, the player can do one of the b+ 2 actions among taking an entry from the
cell, placing an entry in the cell or doing nothing.

We can cut this action sequence (v1, h1), . . . , (vq, hq) into t segments such that the actions
(vji−1+1, hji−1+1), . . . , (vj , hj) were performed during the execution of the Update protocol on
input (opi, wi, indi), with 1 = j0 ≤ j1 ≤ · · · ≤ jt = q. As in the case of Lemma 3.3, the
action sequence can answer at most bq(b + 2)q update queries. On the other end, the number of
update sequences with the same leakage as [(op1, w1, ind1), . . . , (opt, wt, indt)] is at leastKt, as any
sequence [(op1, w

′
1, ind1), . . . , (opt, w

′
t, indt)] with w′1, . . . , w′t ∈ K have the same leakage (cf. the

remark above).
As a consequence, we must have that

bq(b+ 2)q ≥ Kt ⇔ q ≥ t logK

log b(b+ 2)
.

Also, we know that the computational complexity of an Update query has to be larger than b− |σ|
(every memory cell used during the execution of the protocol has to be used unless it is useless). In
the end, we have that the average complexity of an Update query is

Ω

(
max

{
b− |σ|, logK

log b(b+ 2)

})
.

Finally, by directly applying Lemma 3.4, we have that the average complexity of an update query is

Ω

(
logK

log |σ| · log logK

)
.

Similarly to the lower bound of Theorem 3.2, this lower bound can be improved to

Ω

(
logK

log |σ| · log(a)K

)
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for any a ∈ N∗ ifK is large enough, which leads us to believe that the actual lower bound is actually

Ω

(
logK

log |σ|

)
.

We will see in Section 4.5 that this last lower bound is tight.

4.4 Building a Forward Private SSE Scheme from Static Schemes

In this section, we describe a generic way to construct a forward private scheme from a static
scheme. This method was used to construct the �rst forward private scheme, SPS, in [SPS14], and
is borrowed from the hierarchical ORAM literature (cf. [GM11; GMOT12]). Note that the generic
construction described hereunder only supports additions, but that it can easily be modi�ed to also
support deletions.

The idea, is that, to storeN entries, one would useL = dlogNe levels EDB0, . . . ,EDBL−1, where
each EDBi is a database encrypted using a static SSE scheme Σ storing 2i entries. A level can be
empty, i.e. be uninitialized and set to ∅. The client stores the keys of the L instances, and to answer
a search queries, runs the search algorithm on each of the levels, requiring at least O(αw + logN )
work. Updates are more involved and work as follows. When a new atomic entry (w, ind) has to be
inserted, the client checks if the �rst level EDB0 is empty or not. If it is empty, it sets EDB0 to be
the encrypted database generated by running Σ.Setup on the database containing only the entry
(w, ind). Otherwise, the client gets the lowest empty level EDBi, fetches the content of every level
EDBj with 0 ≤ j < i, resets these levels (i.e. sets them to the empty state), and sets EDBi to the
output of Σ.Setup(DB0→i−1), where DB0→i−1 is the database consisting of the entries previously
stored in levels 0 to i− 1. A detailed description of this construction is given in Algorithm 4.1.

One important downside of this construction is that it requires large transient client storage during
updates (O(N ) in the worst case) and has very large worst case computational and communication
complexity: an update requires CStp

Σ (2i) operations, where i the lowest empty level at the moment
of the update, and CStp

Σ (m) is the running time of Σ’s Setup algorithm on input a database of size
m. In particular, it is Ω(N ) when rebuilding the highest level. Yet, the amortized complexity is

only Ω

(
logN · C

Stp
Σ (N)
N

)
, and using de-amortization techniques, we can actually ensure that the

average case update complexity becomes the worst-case complexity (cf. [GMOT12]).

One interesting feature of this generic construction is that, in some sense, the forward private
scheme inherits properties from the underlying static scheme. This is particularly useful for locality
and read e�ciency: if the static scheme has loc(m) locality and rdeff(m) for a database of size m,
our generic construction will haveO(logN · loc(N)) locality andO(reff(N)). If, for example, Σ is
Scheme I from [ANSS16], with perfect locality, optimal server storage and O(logN log logN ) read
e�ciency, we end up with a forward private scheme with O(logN ) locality, O(logN log logN )
read e�ciency and optimal server storage. Moreover, as the setup complexity of the scheme is
O(N ), the average update complexity of the induced forward private construction is O(logN ).

In [SPS14], Stefanov et al. use this generic idea, and add some structure to the way the elements
are stored in the static schemes. This allows them to improve the e�ciency of the search protocol in
the presence of deletions to aO

(
nw log3N

)
complexity (instead of the Ω(αw + logN ) complexity

of the generic approach). This additional structure requires to sort the levels while being rebuilt: the
(re)construction of a level of size m requiresO(m logm) work instead ofO(m). As a consequence,
the update complexity, both computational and communication, make the scheme barely practical:



72 Chapter 4 Forward Privacy

Algorithm 4.1 Forward privacy from static SSE. Σ is a static SSE scheme.
Setup(DB)

1: L← dlog |DB|e
2: Cut DB in DB0, . . . ,DBL−1 such that
|DBi| = 2i or 0 and

∑L−1
i=0 |DBj | = |DB|

3: for i = 0 to L− 1 do
4: if |DBi| 6= 0 then
5: (EDBi,Ki, σi)← Σ.Setup(DBi)
6: else . |DBi| = 0
7: (EDBi,Ki, σi)← (∅,∅,∅)
8: end if
9: end for

10: return
(

(EDBi)
L−1
i=0 , (Ki)

L−1
i=0 , (σi)

L−1
i=0

)

Search(KΣ, σ, w; EDB)

1: for i = 0 to L− 1 do
2: if Ki 6= ∅ then
3: Run Σ.Search(Ki, σi, w; EDBi)
4: end if
5: end for

Update(KΣ, σ, op, in; EDB)

1: Let ` be the �rst empty level (∀i < `,EDBi 6= ∅).
2: The client downloads and decrypts the entries in EDB0, . . . ,EDB`−1, and places them in the

dataset DB0→`−1.
3: The client sets (Ki, σi)← (∅,∅) for i < `.
4: The server sets EDBi ← ∅ for i < `.
5: The client runs (EDB`,K`, σ`) ← Σ.Setup(DB0→`−1 ∪ {(w, ind)}) and sends EDB` to the

server.

the amortized update complexity isO
(
log2N

)
and updates need up to 5 kB of data to be transferred

for each updated entry.

Another mean of designing forward private schemes is necessary. In particular, we want some-
thing whose search and update complexity are close to the non-forward-private dynamic schemes
(cf. Table 4.1). This is what we will do in Sections 4.5 and 4.6.

4.5 Σoφoς : Simple Optimal Forward Secure Searchable Encryption

In this section, we start by constructing a forward secure SSE scheme, whose Search and Update
protocols are performed in a single round-trip, but at the cost of O(W (logD + λ)) storage on the
client side. We also �rst consider a scheme that only supports additions, not deletions. We will then
describe how to turn this basic construction into an SSE construction supporting both additions
and deletions, with reduced client storage. This construction, called Σoφoς will be a simple optimal
(for computations and communications, during both searches and updates), forward private SSE
scheme2.

4.5.1 General Ideas

In an inverted index scheme (such as [CGKO06] and derived works), we are usually considering
for each keyword w an indexed list of matching documents (ind0, . . . , indnw). Every element indc

2Σoφoς (pronounce ‘sophos’) stands for Scalable Optimal FOrward Secure Searchable Encryption. It also refers to the
ancient Greek for ‘wise’: we strongly believe that it is wise to use forward private SSE.
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Table 4.1 – Comparison of dynamic SSE schemes. In all works except [SPS14], deletions are not
optimally supported: the search is not linear in the number of matching documents, but
in the number of inserted documents matching the query. We omitted the polynomial
dependency in the security parameter λ for both computation and communication
complexity. The Õ (·) notation hides the log logN factors. FP stands for forward
privacy. Update complexities are given per updated document/keyword pair. We only
considered schemes whose server’s storage complexity is optimal (O(N )). Remember
that K is the number of distinct keywords in the database. The client’s storage is given
as the number of entries stored by the client. As such, each entry is of size logDmax,
where Dmax is the maximum number of documents supported by the scheme. We
recall that nw is the number of results of the query, and aw is the number of entries
historically added to w (cf. Section 3.2.2) For SPS, we give two asymptotics for the
Search algorithm, as its e�ciency depends on the algorithm chosen to execute the
query.

Scheme Computation Communication Client FP
Search Update Search Update Storage

Πdyn [CJJ+14] O(aw ) O(1) O(nw ) O(1) O(1) 7

SPS [SPS14] O(aw + logN ) O
(
log2N

)
O(nw + logN ) O(logN ) O(Nα ) 3O

(
nw log3N

)
TWORAM
[GMP16] Õ

(
aw logN

+ log3N

)
Õ
(
log2N

)
Õ

(
aw logN

+ log3N

)
Õ
(
log3N

)
O(1) 3

Σoφoς § 4.5 O(aw ) O(1) O(nw ) O(1) O(K ) 3

Diana § 4.6 O(aw ) O(log aw ) O(nw + log aw ) O(1) O(K ) 3

Lower bound
Theorem 4.1

Ω(nw ) Ω
(

logK
log |σ| log logK

)
Ω(nw ) Ω(1) Θ(|σ|) 3

of this list is then encrypted and stored at a (logical) location derived from w and c. We call this
location UTc(w). When the client wants to add a document matching w, he computes a new
location UTnw+1(w), encrypts the document index as e, and sends (UTnw+1(w), e) to the server
(this explains our notation UT , for update token).

When the client performs a search query on w, he will issue a search token that will allow the
server to recompute the update tokens, and hence the locations of the entries matchingw. In general,
we want the update tokens for a given w to be unlinkable until a search token ST (w) is issued.
In our case, the search token generated by the client will depend on the number nw of matching
entries, and we want that the search token STc(w) generated for c results to be unlinkable to the
update tokens UTi(w) for i > c, i.e. the update tokens that will be issued for keyword w in the
future. In particular, it implies that the server cannot compute STi(w) from STc(w) when i > c.

To do so, we could make the client generate all the search tokens using a PRF evaluation F (w, i),
and send them to the server. However this solution is not satisfactory: the client needs to send
O (nw ) tokens to the server, which can be a problem on constrained devices. Here, we propose
another solution, based on trapdoor permutations: from STi(w), the server will be able to compute
STi−1(w) using the a public key, but only the client will be able to construct STi+1(w).

Figure 4.1 gives the relations among the tokens and formalizes our idea for token generation.



74 Chapter 4 Forward Privacy

ST0(w) ST1(w) STc(w) STc+1(w)

UT0(w) UT1(w) UTc(w) UTc+1(w)

πPK

π−1
SK

π(c−1)
PK

πPK

π−1
SK

HKw HKw HKw HKw

· · ·

· · ·

Figure 4.1 – Relations among search and update tokens. Operations in red can only be done by the
client, using the secret key SK.

STi+1(w) is generated from STi(w) by applying the inverse of a one-way trapdoor permutation π:
only the client will be able to perform this operation, while the server, given the public key PK will
do the opposite, namely compute from a search token STc(w) all the tokens STi(w) for 0 ≤ i < c.
Finally, the update tokens are derived from the search tokens, using a keyed hash function. In
particular, it is crucial that H is pre-image resistant for the security of the scheme. We will actually
show the security of this construction when H is modeled as a random oracle.

4.5.2 Basic Construction

Algorithm 4.2 gives the formal description of our basic forward private scheme, Σoφoς-B. It follows
the idea of the previous section for the token generation. Also, the only type of updates Σoφoς-B
supports is the insertion of new keyword/document pairs.

In the pseudo code, π is a trapdoor permutation, F is a PRF, H1 and H2 are keyed hash functions,
whose outputs are, respectively, µ and ` bits long. On the client side, W maps every inserted
keyword to its current search token STc(w) and to a counter c = nw − 1. Every time a new
document matching w is inserted, W[w] gets ‘incremented’: the client generates the new search
token STc+1(w) = π−1(STc(w)) and stores it in W. If w did not match any documents, a new
ST0(w) is randomly picked and put in W. Finally, the entries’ locations, i.e. the update tokens, are
derived from the search tokens by a keyed hash function.

Σoφoς ’ setup algorithm does not take a database as input: as stated in Section 4.1, encryption can
be performed online with a forward private scheme, without loss of security.

Correctness. The correctness of Σoφoς-B is quite straightforward. The only issue is collision
among the update tokens UTc(w), generated from H1 with input (Kw, STc). We can reduce the
correctness to the collision resistance of H1. In particular, we need to choose µ such that N2/2µ is
negligible in the security parameter, so in practice, we will set µ = λ+ 2 logNmax, where Nmax is
the maximum number of pairs the database can store.

Complexity. The scheme’s computational complexity is optimal: O (nw ) for a search query,
O(1) for an update. Both Search and Update are single round, and their performance will not be
more a�ected by network latency than regular insecure protocols.

Bandwidth is also (almost) optimal. The Search protocol uses a token that is a single element in
M (the domain of the trapdoor permutation), resulting in log |M| = poly(λ) bits token per query.



4.5 Σoφoς : Simple Optimal Forward Secure Searchable Encryption 75

Algorithm 4.2 Σoφoς-B: Forward private SSE scheme with large client storage.
Setup()

1: KS
$← {0, 1}λ

2: (SK,PK)← π.KeyGen(1λ)
3: W,T← empty map
4: return ((T,PK), (KS ,SK),W)

Search(KΣ, w, σ; EDB)

Client:
1: Kw ← FKS (w)
2: (STc, c)←W[w] . c = nw − 1
3: if (STc, c) = ⊥
4: return ∅
5: Send (Kw, STc, c) to the server.

Server:
6: for i = c to 0 do
7: UTi ← H1(Kw, STi)
8: e← T[UTi]
9: ind← e⊕H2(Kw, STi)

10: Output each ind
11: STi−1 ← πPK(STi)
12: end for

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: Kw ← F (KS , w)
2: (STc, c)←W[w]
3: if (STc, c) = ⊥ then
4: ST0

$←M, c← −1
5: else
6: STc+1 ← π−1

SK(STc)
7: end if
8: W[w]← (STc+1, c+ 1)
9: UTc+1 ← H1(Kw, STc+1)

10: e← ind⊕H2(Kw, STc+1)
11: Send (UTc+1, e) to the server.

Server:
12: T[UTc+1]← e

The Update protocol sends a µ+ ` bits token per updated document/keyword pair, representing a
λ+ logNmax bits increase compared to the smallest possible update token size of an unencrypted
database.

The client’s storage is O(K(log |M|+ logD)): an element ofM is stored for every keyword,
with the counter c < D.

4.5.3 Security

The adaptive security of Σoφoς-B can be proven in the Random Oracle Model, and relies on the
one-wayness of the TDP π and on the pseudo-randomness of F . We start by giving a sketch of the
proof, and then full proof.

Theorem 4.2 (Adaptive security of Σoφoς-B). Let π be a one-way trapdoor permutation, F a PRF,
and H1 and H2 two hash functions modeled as a random oracle outputting respectively µ and λ bits.
We recall from De�nition 4.3 that the leakage function LFP is de�ned as

LSrch
FP (w) = (sp(w),Hist(w))

LUpdt
FP (add, w, ind) = ⊥.

Then Σoφoς-B is LFP-adaptively-secure. More precisely, for any polynomial-time adversaryA encrypt-
ing a database of at most N entries, with at mostK distinct keywords, there exists polynomial-time
adversaries B1 and B2, and a simulator S such that

AdvSSE-sim
Σ,S,LFP,A

(λ) ≤ Advprf
F,B1

(λ) + 2N · Advtdp
π,B2

(λ)

where B1 makes at mostK queries.
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Hence, Σoφoς thwarts all the devastating adaptive �le-injection attacks of [ZKP16], but not the
non-adaptive ones.

The proof works by constructing successive indistinguishable hybrids, where H1 and H2 are
modeled as random oracles, the �rst hybrid being the real-world game, and the last the ideal-world
game. We �rst replace F by a random function, i.e. we randomly pick the keys Kw.

In a second step, we will replace all the strings generated by the random oracles in the Update
protocol by randomly chosen strings. The game will then program the random oracles during the
Search protocol so that the result produced by the server matches the real results: H1 is set to map
the i-th search token for w to the update token produced randomly when w was updated for the
i-th time. H2 is programmed in a similar manner to produce the right keystream used to hide the
ind values. We show that if the �rst and second hybrids are not indistinguishable, it means that the
adversary was able to invert the trapdoor permutation without knowing the secret key.

Finally, we construct a hybrid that only needs to know the repetition of search queries and the
history to produce search tokens indistinguishable from the previous hybrid. As this hybrid only
needs the output of the leakage function to run, it means that we have a simulator that produces
indistinguishable transcripts from the real security game.

Note thatLFP uses Hist and not DB because the simulator needs to know exactly when documents
matching w were inserted in the database in order to correctly simulate the real protocol.

Proof. We are going to derive several games from the real world game SSERealAΣoφoς(1λ).

Game G0. G0 is exactly the real world SSE security game SSEReal.

P[SSERealAΣoφoς(1λ) = 1] = P[GA0 (1λ) = 1].

Game G1. Instead of calling F when generating Kw, G1 picks a new random key when it is
confronted to a new w, and stores it in a table Key so it can be reused next time w is queried. If an
adversary is able to distinguish betweenG0 andG1, we can then build a reduction able to distinguish
between F and a truly random function. More formally, there exists an e�cient adversary B1,
making at most K oracle queries, such that

P[GA0 (1λ) = 1]− P[GA1 (1λ) = 1] ≤ Advprf
F,B1

(λ).

Game G2. In G2, in the Update protocol, instead of calling H1 to generate the update tokens UT ,
we pick random strings. Then, during the Search protocol, the random oracle H1 is programmed so
that H1(Kw, STc(w)) = UTc(w).

Algorithm 4.3 formally describes G2, and also introduces an intermediate game G̃2, by including
the additional boxed lines. In the pseudo-code, we explicit the calls to the random oracle H1, and
keep track of the transcripts via the table H1. In particular, we can see that we explicitly program
the RO during Search at line 7. Note that we use the following convention for the table Key: if an
entry is accessed for the �rst time, it is �rst randomly chosen and then returned. Also G2 and G̃2

make some bookkeeping of the search tokens STc, instead of recomputing all of them in Search.
The point of G̃2 is to ensure consistency of H1’s transcript: in G̃2, H1 is never programmed to

two di�erent values for the same input by Search’ line 7. Instead of immediately generating the UT
derived from the c-th ST for keyword w fromH1, G̃2 randomly either chooses them if (Kw, STc+1)
does not already appear in H1’s transcript, or, if this is already the case, sets UTc+1 to the already
chosen value H1[Kw, UTc+1]. Then, G̃2 lazily programs the RO when needed by the Search protocol



4.5 Σoφoς : Simple Optimal Forward Secure Searchable Encryption 77

Algorithm 4.3 Games G2 and G̃2 Boxed code is included in G̃2 only.
Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: bad← false
4: return ((T,PK), (KS ,SK),W)

Search(KΣ, w, σ; EDB)

Client:
1: Kw ← Key[w]
2: (ST0, . . . , STc, c)←W[w]
3: if (ST0, . . . , STc, c) = ⊥
4: return ∅
5: (ind0, . . . , indc)← AddDB(w) . Ordered

from the order of updates
6: for i = 0 to c do
7: H1(Kw, STi)← UT[w, i]
8: end for
9: Send (Kw, STc, c) to the server.

Server:
10: for i = c to 0 do
11: UTi ← H1(Kw, STi)
12: e← T[UTi]
13: ind← e⊕H2(Kw, STi)
14: Output each ind
15: STi−1 ← πPK(STi)
16: end for

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: Kw ← Key[w]
2: (ST0, . . . , STc, c)←W[w]
3: if (ST0, . . . , STc, c) = ⊥ then
4: ST0

$←M, c← −1
5: else
6: STc+1 ← π−1

SK(STc)
7: end if
8: W[w]← (ST0, . . . , STc+1, c+ 1)
9: UTc+1 ← {0, 1}µ

10: if H1(Kw, STc+1) 6= ⊥ then
11: bad← true

12: UTc+1 ← H1(Kw, STc+1)

13: end if
14: UT[w, c+ 1]← UTc+1

15: d← ind⊕H2(Kw, STc+1)
16: Send (UTc+1, d) to the server.

Server:
17: T[UTc+1]← e

H1(k, st)

1: v ← H1(k, st)
2: if v = ⊥ then
3: v

$← {0, 1}λ
4: if ∃w, c s.t st = STc ∈W[w] then
5: bad← true, v ← UT[w, c]

6: end if
7: H1(k, st)← v
8: end if
9: return v

(line 7) or by an adversary’s query (line 5 of H1), so that its outputs are consistent with the chosen
values of the UT ’s.

Because of this, H1’s outputs in G̃2 and G1 are perfectly indistinguishable, and so are the games:

P[G̃2
A

(1λ) = 1] = P[GA1 (1λ) = 1].

The games G̃2 and G2 are also perfectly identical unless the �ag bad is set to true, and we can
apply the identical-until-bad technique to bound the distinguishing advantage between G̃2 and G2:

P[G̃2
A

(1λ) = 1]− P[GA2 (1λ) = 1] ≤ P[bad is set to true in G̃2
A

(1λ)].

Intuitively, we can see that, if bad is set to true, we can break the one-wayness of the TDP. More
formally, we are going to construct a reduction B2 from a distinguisher A inserting N keyword/doc-
ument pairs in the database, using a technique similar to the Schnorr’s signatures proofs. We note
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the maximum number of documents matching a keyword maxw∈W nw = nmax. We assume that
nmax = poly(λ). B2 will take as input a public key PK and a challenge y ∈M, and will output x
such that πPK(x) = y.

As for Schnorr’s signatures proofs, B2 �rst guesses the pair (w∗, c∗) for which bad will be set to
true for the �rst time, by querying H1 on (Kw∗ , STc∗) (i.e. by pre-computing UT[w∗, c∗]), among
the N possible pairs. For all keyword w ∈W \ {w∗}, B2 pre-computes STi(w) as follows:

STnmax(w)
$←M,

STi(w)← πPK(STi+1(w)) for 0 ≤ i < nmax

Similarly, for w∗, B2 generates the search tokens from the challenge y:

STc∗−1(w∗)← y,

STi(w
∗)← πPK(STi+1(w∗)) for 0 ≤ i < c∗

It is essential to see that the distribution of the search tokens remains unchanged from game G2. So,
in order to return a pre-image of y, the reduction B2 will �nd the value x by evaluating πPK(r) for
all (Kw∗ , r) in the RO’s transcript and check if πPK(r) = y. Hence, for a �xed pair (w∗, c∗), if G2

sets bad to true because of an adversary’s query on (Kw∗ , STc∗), B2 is able to invert π without the
secret key:

P [bad is set to true by forging UT[w∗, c∗]] = Advtdp
π,B2

(λ).

Guessing the pair (w∗, c∗) implies a N loss factor in the advantage of the reduction, and

P[GA1 (1λ) = 1]− P[GA2 (1λ) = 1] = P[G̃2
A

(1λ) = 1]− P[GA2 (1λ) = 1]

≤ N · Advtdp
π,B2

(λ).

GameG3. GameG3 does exactly what gameG2 did forH1, but forH2. The exact same argument
can be reused, giving that there is an adversary B3 such that

P[GA2 (1λ) = 1]− P[GA3 (1λ) = 1] ≤ N · Advtdp
π,B3

(λ).

Note that we can consider that B2 = B3 without loss of generality: we could have started with H2

instead of H1 and the reduction would have been the same.

Game G4. In game G4, as de�ned by Algorithm 4.4, the game keeps track of the randomly
generated string UT and d di�erently than before, but the transcript output by Search and Update
are strictly identical, and the random oracles are also programmed identically. In Algorithm 4.4, we
removed the now useless code for the H1 oracle. Also note that we got rid of the server’s part in the
protocols: these are single round-trip protocols and the removed lines do not in�uence the client’s
transcript.

We still have to show that G3 and G4 are indistinguishable. For Update, this is immediate as we
are already outputting fresh random strings for each update in G3. In Search, G4 generates the
search token from ST0 by iterating π−1

SK instead of using an already computed and stored token
(note that for W, we adopt the same convention than for Key: if an entry is accessed for the �rst
time, the game randomly picks it inM and stores it in W).

Finally, instead of directly mapping the pairs (w, i) (a keyword and the i-th update to this keyword)
to the values picked for UT and e, we use the intermediate table Updates that maps (w, i) to the
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Algorithm 4.4 Game G4.
Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: u← 0
4: Updates← empty map
5: return ((T,PK), (KS ,SK),W)

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: Append (u, ind) to Updates[w]

2: UT[u]
$← {0, 1}µ

3: e[u]
$← {0, 1}λ

4: Send (UT[u], e[u]) to the server.
5: u← u+ 1

Search(KΣ, w, σ; EDB)

Client:
1: Kw ← Key[w]
2: ST0 ←W[w]
3: [(u0, ind0), . . . , (uc, indc)]← Updates[w]
4: if c = 0
5: return ∅
6: for i = 0 to c do
7: Program H1 and H2:

H1(Kw, STi)← UT[ui]
H2(Kw, STi)← e[ui]⊕ indi

8: STi+1 ← π−1
SK(STi)

9: end for
10: Send (Kw, STc, c) to the server.

global update count (the map is implicit as Updates[w] stores a list of update counter values that
gets appended with the current counter when w is updated). Hence,

P[GA3 (1λ) = 1]− P[GA4 (1λ) = 1] = 0.

The Simulator. We can cut the code of game G4 in two independent parts: the leakage and the
simulator. The simulator is described in Algorithm 4.5, and the leakage function is LFP. G4 and
SSEIdealS,LFP

are identical games, the only di�erence being that, instead of the keyword w, S uses
the counter w = min sp(w) uniquely mapped from w using the leakage function. Hence,

P[GA4 (1λ) = 1]− P[SSEIdealAΣoφoς,S,LFP
(1λ) = 1] = 0.

Conclusion. By combining all the contributions from all the games, there exists 2 adversaries B1

and B2 such that

P[SSERealAΣoφoς(1λ) = 1]− P[SSEIdealAΣoφoς,S,LFP
(1λ) = 1] ≤ Advprf

F,B1
(λ) + 2N · Advtdp

π,B2
(λ).

4.5.4 Derived Constructions

Deletion Support. Although Σoφoς-B does not support deletions, this is easy to �x by ‘dupli-
cating’ the data structure: we will use one instance of Σoφoς-B for insertions, and the other for
deletions. When searching w, the server will compute and return the di�erence between the indices
matching w in both instances.

The leakage stays the same: we can separate the elements of Hist(w) according to their operation
(add or del) in two sublists Histadd(w) and Histdel(w) to build the leakage functions of each instance
of Σoφoς-B. The only di�erence with the original scheme would be that it leaks the operation
op = add or del. Yet, we can use the same map T to store the entries for both instances, which
would hide the actual operation performed during the update.
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Algorithm 4.5 Proof of Σoφoς : simulator S
S.Setup()

1: (SK,PK)← KeyGen(1λ)
2: W,T← empty map
3: u← 0
4: return (T,PK)

S.Update()

Client:
1: UT[u]

$← {0, 1}µ

2: e[u]
$← {0, 1}λ

3: Send (UT[u], e[u]) to the server.
4: u← u+ 1

S.Search(sp(w),Hist(w))

Client:
1: w ← min sp(x)
2: Kw ← Key[w]
3: ST0 ←W[w]
4: Parse Hist(w) as

[(u0, add, ind0), . . . , (uc, add, indc)]
5: if c = 0
6: return ∅
7: for i = 0 to c do
8: Program H1 and H2:

H1(Kw, STi)← UT[ui]
H2(Kw, STi)← e[ui]⊕ indi

9: STi+1 ← π−1
SK(STi)

10: end for
11: Send (Kw, STc) to the server.

Batch Updates. We can also slightly modify the update protocol to support batch updates on
documents: when we want to update document with index ind on the keywords list w, we succes-
sively select keywords in w in random order, and run the original Update protocol with input ind
and the selected keyword.

Again, the leakage function remains identical. We just have to slightly update the security proof:
when the simulator programs the random oracles on (Kw, STi), instead of targeting exactly the
only token produced at the i-th update on w, it will pick a one of the random tokens produced
during the update that modi�ed DB(w) for the i-th time. This is the reason why picking keywords
in a random order during update is important: if they were picked sequentially, the simulator would
have to have access to the insertion order.

4.5.5 Reducing Client-side Storage

We saw that the client’s storage is O(K(log |M|+ logD)). This can be a problem on constrained
devices, especially whenM is big, which is the case for both RSA and Rabin’s Squaring trapdoor
permutations:M = Z∗N , where N is, for a reasonable level of security, a 2048 bits integer.

But there is a workaround to reduce storage to O(K logD) at the expense of additional compu-
tations. The idea is to pseudo-randomly generate ST0(w) from w (or a unique identi�er iw ∈ N
of w). WhenM = Z∗N , this is quite easy to do from a PRF GKTDP

: N→ {0, 1}λ+logN by taking
ST0(w)← GKTDP

(iw) mod N .
When STc(w) is needed, we recompute it from ST0(w). However, this will be very computation-

ally expensive if we have to iteratively compute π(−c)
SK by iterating π−1

SK c times. Fortunately, this is
not the case for common trapdoor permutations π, and in particular for RSA: if (p, q, d) and (N, e)

are respectively the secret and the public keys, y = RSA
(−i)
SK (x) can be computed as follows.

f ← di mod (p− 1)(q − 1),

y ← xf mod N.
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We can also use the Chinese remainders technique to improve the practical performance of this
computation.

Then, the client has only to store an identi�er iw for every w, together with the counter c. When
he needs to, he can easily recompute the STc(w) from iw and c, with a small complexity overhead
(essentially the cost of a private-key operation, when RSA is the chosen TDP). The client’s storage
reduces to O(K logD) asymptotically (as c < D).

We call this version Σoφoς (without the -B), and it is the one that we implemented. The proof of
security of Σoφoς-B can easily be ported to Σoφoς .

Theorem 4.3. Σoφoς is LFP-adaptively-secure.

4.5.6 Comparison with Other Constructions

If we limit this scheme to only support modi�cation of full documents (i.e. it is not allowed
to add/delete a keyword to a document already in the database, but we can add or delete an
entire document), our scheme has the same functionalities as the SPS scheme [SPS14], whose
leakage function is LSPS, with LSrchSPS (w) = (sp(w),DB(w),AddDB(w)), and LUpdtSPS (op, ind,w) =
(op, ind, |w|). LFP and LSPS might look incomparable, but actually we can construct LFP from
LSPS rather easily: we just reconstruct Hist(w) from AddDB(w) and the timestamps t generated at
every update. We associate these timestamps to the leaked information (op, ind, |w|), and for each
matching document in AddDB(w), we can retrieve the associated update operation, and when it
happened, and hence recompute Hist(w).

This shows that Σoφoς is LSPS-adaptively-secure. We can similarly show that SPS is LFP-
adaptively-secure by adapting the proof of [SPS14]. Hence, SPS and Σoφoς have exactly the same
security guarantees. However Σoφoς is much more e�cient in terms of bandwidth usage and
update complexity. Namely, SPS’s updates trigger O

(
log2N

)
work and O (logN ) bandwidth

usage per update, using standard, yet not trivial de-amortization techniques. Σoφoς bandwidth and
computational overheads for an update are both a constant.

Also, SPS needs O(Nα ) client memory for 0 < α < 1 as working storage to run the oblivious
sort algorithm needed during the updates, while Σoφoς stores O(K logD) on the client – and we
expect K � N .

As presented in Table 4.1, Σoφoς has the same asymptotic complexity as the most e�cient
dynamic SSE schemes. Moreover, we saw in Section 4.3 that we cannot really hope for something
better in terms of features (space reclamation) or storage locality, for a forward private scheme.
Moreover, Σoφoς shows that the lower bound of Theorem 4.1 is essentially tight: as the client’s
state stores O(K ) elements of size O(Dmax ) (where Dmax is the maximum number of documents
supported by the scheme), Theorem 4.1 tells us that the complexity of updates is Ω

(
1

log logK

)
.

Finally, we explained that the actual lower bound for update complexity of forward private schemes
was more likely to be Ω

(
logK
log |σ|

)
, which tightly translates to Σoφoς when |σ| = K .

This justi�es the optimality claim on the update complexity made higher, at the beginning of the
section, and in Σoφoς’ name itself.

4.5.7 Outsourcing the Client’s State

One major downside of Σoφoς is the large storage needed on the client side: we needO(K logDmax )
bits to store the counters. It would be nice to reduce this storage, and even to achieve constant client



82 Chapter 4 Forward Privacy

storage. And this directly raises the question of the existence of a forward private scheme with
constant client storage and optimal updates (O(logK ) update complexity).

Storing the state in an ORAM. It is very important that the outsourcing of Σoφoς ’ and Diana’s
counter map does not leak that the same counter was accessed when a search query on w is followed
by an update query on w. A natural way to avoid that is to put the counter map in an ORAM, as
every access would be hidden.

Let us consider using Path ORAM [SDS+13a]. We want to outsource Θ(K ) blocks, and with
Path ORAM, this will imply a Θ

(
log2K

)
computational overhead, with a O(logK ) client state

which can itself be downloaded (and later re-uploaded) to the server for every counter map access
(cf. [SDS+13b, Section 6.2]).

If we use the construction of Kushilevitz et al. [KLO12] instead, we directly end up with a
construction with constant client state and O

(
log2 K

log logK

)
update complexity.

Note that, using this construction, we are unable to tightly match the lower bound of Theorem 4.1
(it is unclear if the O(logK ) overhead o�ered by Path ORAM when the blocks are large enough
really applies here as we cannot generically evaluate the size of the blocks in our case), but that any
improvement in the ORAM constructions would lead to an improvement in our case. Actually, if an
ORAM scheme is shown to tightly meet the lower bound of [GO96], we will be able to construct a
tight forward private SSE scheme by using Σoφoς and this ORAM to outsource the client’s state.

Batching ORAM updates. A practical issue we might encounter by using ORAM to store the
counter map is that we pay for the update obliviousness even during searches, which implies having
a non-optimal search algorithm (e.g. O

(
nw + log2K

)
complexity instead of O(nw )). To reduce

this cost, we can batch the ORAM updates induced by the SSE search queries, as done by Miers and
Mohassel in [MM17].

More precisely, when reading the counter map during a search query, the client will keep the
ORAM leaf in a list of deferred reads, and, during the next Update query, the client will �rst execute
these deferred reads on the ORAM, before reading and modifying the counter associated with the
updated keyword. Doing this will leak that some search queries are repeated, but that will be the
case anyway given Σoφoς’ leakage pro�le.

4.6 Diana: Forward-Secure SSE with Very Low Overhead

In this section, we describe a generic way to construct forward-private searchable encryption from
constrained PRFs on N with respect to the range family of circuits C = {Cc|Cc(x) = 1⇔ 0 ≤ x ≤
c} (cf. Section 2.3.2 for the full description of constrained PRFs). We will see that Σoφoς can be seen
as an instantiation of this scheme, and then provide a much more e�cient one based on the GGM
PRF [GGM84], which we call Diana.

4.6.1 FS-RCPRF: Forward-Secure SSE from Range Constrained PRFs

Let F̃ : {0, 1}λ × {0, . . . , nmax} → {0, 1}µ be a constrained PRF with respect to the class of range
circuits C de�ned above. Also, let F be a 2λ-bit PRF, and H1 and H2 two hash functions modeled as
two random oracles with H1 : {0, 1}λ × {0, 1}µ → {0, 1}λ, and H2 : {0, 1}λ × {0, 1}µ → {0, 1}`.
Algorithm 4.6 describes FS-RCPRF, a forward-secure scheme based on the range-constrained PRF F̃ .
The simple idea behind FS-RCPRF is that update tokens for entries matching keywordw are generated
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using F̃ in counter mode, where the counter is incremented every time a new entry matching w is
inserted. Then, during search, the client gives to the server the constrained key allowing only for
the evaluation of F̃ on {0, . . . , nw}. The resulting scheme can be seen as a generalization of the
dynamic scheme of Cash et al. [CJJ+14], where, during the search, the client gives to the server the
constrained key of w instead of the master key Kw.

Algorithm 4.6 FS-RCPRF: Forward private SSE scheme from range-constrained PRF F̃ .
Setup()

1: KΣ
$← {0, 1}λ, W,EDB← empty map

2: return (EDB,KΣ,W)

Search(KΣ, w, σ; EDB)

Client:
1: Kw||K ′w ← FKΣ

(w)
2: c←W[w] . c = nw − 1
3: if c = ⊥
4: return ∅
5: ST ← F̃ .Constrain(Kw, Cc) . Cc is the

circuit evaluating to 1 on {0, . . . , c}
6: Send (K ′w, ST, c) to the server.

Server:
7: for i = c to 0 do
8: Ti ← F̃ (ST, i)
9: UTi ← H1(K ′w, Ti)

10: e← EDB[UTi]
11: ind← e⊕H2(K ′w, Ti)
12: Output each ind
13: end for

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: Kw||K ′w ← F (KΣ, w)
2: c←W[w]
3: if c = ⊥
4: c← −1
5: T c+1

w ← F̃ (Kw, c+ 1)
6: W[w]← c+ 1
7: UTc+1 ← H1(K ′w, T

c+1
w )

8: e← ind⊕H2(K ′w, T
c+1
w )

9: Send (UTc+1, e) to the server.
Server:

10: EDB[UTc+1]← e

The intuition for the security of FS-RCPRF is simple: as the adversary only gets to see the CPRF
keys for ranges corresponding to already inserted entries during searches, he cannot predict the
evaluation of the PRF for inputs outside of these ranges, and in particular for newly inserted entries.
Hence updates leak no information. Theorem 4.4 states the formal security of FS-RCPRF.

Theorem 4.4 (Adaptive security of FS-RCPRF). We recall that LFP = (LSrch
FP , LUpdt

FP ) is de�ned as:

LSrch
FP (w) = (sp(w),UpHist(w))

LUpdt
FP (add, w, ind) = ⊥.

FS-RCPRF is LFP-adaptively-secure. More precisely, for any polynomial-time adversary A encrypting a
database of a most N entries, with a mostK distinct keywords, and qRO queries to the random oracles
H1 and H2, there exists polynomial-time adversaries B1 and B2, and a simulator S such that

AdvSSE-sim
FS-RCPRF,S,L,A(λ) ≤ Advprf

F,B1
(λ) + 2N · Advcprf

F̃ ,B2
(λ) +

2NqRO
2µ

.

Proof. The proof proceeds using a hybrid argument, by game hopping, starting from the real-world
game SSERealFS−RCPRFA (λ).
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Game G0. This game is exactly the real world SSE security game SSEReal.

P[SSERealAFS-RCPRF(λ) = 1] = P[G0(1λ) = 1]

Game G1. In this game, we replace the calls to the PRF F by picking a new random output every
time a previously unseen keyword is used. These strings are stored in a table to be reused every time
F is again queried on w. The adversarial distinguishing advantage between G0 and G1 is exactly
the distinguishing advantage for the PRF F : we can build a reduction B1 making at most W calls
on F such that

P[G0(1λ) = 1]− P[G1(1λ) = 1] ≤ Advprf
F,B1

(λ).

Game G2. In G2, the update tokens UT are generated as random strings, instead of using H1.
These strings will then be programmed in the random oracle to ensure that H1(Kw, Tc(w)) =
UTc(w).

Algorithm 4.7 formally describes G2, together with the intermediate game G̃2, which includes
the additional boxed lines. The calls to the random oracle H1 are made explicit, and the game keeps
track of these using the table H1. It allows us to program the RO during the Search algorithm (cf.
line 6). Note that, for the table Key, if an entry is accessed for the �rst time, a new random value is
picked and placed in the table.

Also, G2 and G̃2 make some bookkeeping of the tokens Tc. This bookkeeping allows for exactly
programming H1 when it is queried by the adversary on a valid (K ′w, T

c
w) couple, at line 5.

Hence, H1’s behavior in G̃2 and G1 are perfectly indistinguishable, and:

P[G̃2(1λ) = 1] = P[G1(1λ) = 1].

To �nd the distinguishing advantage between G̃2 andG2, we use the identical-until-bad approach:
G̃2 and G2 are identical until the �ag bad is set to true:

P[G̃2(1λ) = 1]− P[G2(1λ) = 1] ≤ P[bad is set to true in G̃2].

We are going to show that when the adversary is able to set bad at true, he will break the CPRF
security game, by constructing a reductionB2 from a distinguisherA insertingN keyword/document
pairs in the database. B2 �rst guesses the pair (w∗, c∗) for which bad will be set to true for the �rst
time, by querying H1 on (K ′w∗ , Tc∗) (i.e. by pre-computing UT[w∗, c∗]), among the N possible pairs.
For all keyword w ∈W \ {w∗}, B2 behaves exactly as game G̃2. Note that if w∗ has been correctly
guessed, then it means that B2 behaves exactly as game G2 for these keywords. For w∗, B2 will call
its CPRF game oracles (cf. Section 2.3.2) to generate the tokens as follows:

Ti(w
∗)← Eval(i) for 0 ≤ i < c∗,

Ti(w
∗)← Challenge(i) for i ≥ c∗,

ST (w∗)← Constrain(Cnw∗ ).

By closely looking at G2’s code, we see that bad is set to true only if H1 is queried on (K ′w∗ , Tc) for
a value c that has never been queried to Eval, and for which there is no Cc′ with c′ ≥ c on which
Constrain has been queried. It implies that all the queries to Challenge are valid, and that the value
Tc∗ raising bad to true is indistinguishable from random by de�nition of CPRF security. Also, if A
makes qRO queries to the random oracle (apart from the ones already needed by the execution of the
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Algorithm 4.7 Games G2 and G̃2 Boxed code is included in G̃2 only.
Setup()

1: bad← false
2: Key,W,EDB← empty map
3: return (EDB, (Key,W))

Search(KΣ, w, σ; EDB)

Client:
1: Kw||K ′w ← Key[w]
2: (T0, . . . , Tc, c)←W[w]
3: if (T0, . . . , Tc, c) = ⊥ then return ∅
4: [(u0, ind0), . . . , (uc, indc)]← UpHist(w)

. In the order of updates
5: for i = 0 to c do
6: H1(K ′w, Ti)← UT[w, i]
7: end for
8: ST ← F̃ .Constrain(Kw, Cc)
9: Send (K ′w, ST, c) to the server.

Server:
10: for i = c to 0 do
11: Ti ← F̃ (ST, i)
12: UTi ← H1(K ′w, Ti)
13: e← EDB[UTi]
14: ind← e⊕H2(K ′w, STi)
15: Output each ind
16: end for

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: Kw||K ′w ← Key[w]
2: (T0, . . . , Tc, c)←W[w]
3: if c = ⊥ then c← −1
4: T c+1

w ← F̃ (Kw, c+ 1)
5: W[w]← (T0, . . . , Tc, Tc+1, c+ 1)
6: UTc+1 ← {0, 1}λ
7: if H1(K ′w, Tc+1) 6= ⊥ then
8: bad← true, UTc+1 ← H1(K ′w, Tc+1)

9: end if
10: UT[w, c+ 1]← UTc+1

11: e← ind⊕H2(K ′w, T
c
w)

12: Send (UTc+1, e) to the server.
Server:

13: EDB[UTc+1]← e

H1(k, t)

1: v ← H1(k, t)
2: if v = ⊥ then
3: v

$← {0, 1}λ
4: if ∃w, c s.t k = Key[w]

and t = Tc ∈W[w] then
5: bad← true, v ← UT[w, c]

6: end if
7: H1(k, st)← v
8: end if
9: return v

game), as Tc∗ is uniformly random, the probability that H1 was called on (K ′w∗ , Tc∗) is qRO · 2−µ.
Hence,

P[bad is set to true in by querying (K ′w∗ , Tc∗)] ≤ Advcprf

F̃ ,B2
(λ) +

qRO
2µ

,

and, as guessing the pair (w∗, c∗) implies a N loss factor in the advantage of the reduction from
distinguishing G2 and G̃2 to the game of setting bad to true,

P[G1(1λ) = 1]− P[G2(1λ) = 1] = P[G̃2(1λ) = 1]− P[G2(1λ) = 1]

≤ N · Advcprf

F̃ ,B2
(λ) +

NqRO
2µ

.

Game G3. In game G3, we do exactly as in G2, but for H2:

P[G2(1λ) = 1]− P[G3(1λ) = 1] ≤ N · Advcprf

F̃ ,B2
(λ) +

NqRO
2µ

.
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Algorithm 4.8 Game G4.
Setup()

1: u← 0
2: W,EDB← empty map
3: return (EDB, ∅,W)

Search(KΣ, w, σ; EDB)

Client:
1: Kw||K ′w ← Key[w]
2: c←W[w]
3: [(u0, ind0), . . . , (uc, indc)]← UpHist(w)
4: if c = ⊥ then return ∅
5: for i = 0 to c do
6: Program H1 s.t. H1(Kw, F̃ (Kw, i))← UT[ui]
7: ProgramH2 s.t. H2(Kw, F̃ (Kw, i))← e[ui]⊕ indi
8: end for
9: ST ← F̃ .Constrain(Kw, Cc)

10: Send (K ′w, ST, c) to the server.

Update(KΣ, add, w, ind, σ; EDB)

Client:
1: UT[u]

$← {0, 1}µ

2: e[u]
$← {0, 1}λ

3: Send (UT[u], e[u]) to the server.
4: u← u+ 1

Game G4. Game G4, (cf. Algorithm 4.8) keeps track of the randomly generated string UT and e
in dedicated tables: each time an update is performed, new randomness is appended to the tables
and then returned to the server. Then, in Search, the random oracles are programmed as in G3,
so to have consistent results. To do so, G4 uses the information from UpHist(w) to know which
update corresponds to which keyword-document pair.

We got rid of the server’s part in the protocols as it is unchanged: these are single round-trip
protocols and the removed lines do not in�uence the client’s transcript. Finally, we have

P[G3(1λ) = 1]− P[G4(1λ) = 1] = 0.

The simulator. The simulator can directly be derived from G4’s code. We just have to replace
direct uses of the searched keyword w by min sp(w). G4 and SSEIdealS,LΣ

will then be identical
games, the only di�erence being that, instead of the keyword w, S uses the counter w = min sp(w)
uniquely mapped from w using the leakage function.

P[G4(1λ) = 1]− P[SSEIdealAFS-RCPRF,S,LFP
(1λ) = 1] = 0.

Conclusion. By combining all the contributions from all the games, there exists 2 adversaries B1

and B2 such that

P[SSERealAFS-RCPRF(1λ) = 1]− P[SSEIdealAFS-RCPRF,S,LFP
(1λ) = 1]

≤ Advprf
F,B1

(λ) + 2N · Advcprf

F̃ ,B2
(λ) +

2NqRO
2µ

.

The adaptive security of FS-RCPRF is shown in the random oracle model (ROM), but the ROM is
not needed for non-adaptive security.

Finally, note that the client’s state can be outsourced on the server, as for Σoφoς (cf. Section 4.5.7).
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Reinterpreting Σoφoς with constrained PRFs. The Σoφoς construction is based on the itera-
tion of a trapdoor permutation π to generate the update tokens in a way that prevents the server from
predicting them. Σoφoς can be reinterpreted using our framework by constructing a TDP-based
range-constrained PRF F̃Σ.

The master key F̃Σ is composed of an RSA key SK and an element ST0 ∈ ZN where each can
be pseudo-randomly generated from a random λ-bit key. F̃ ((SK, ST0), c) = H(π−cSK(ST0)) where
π−c is the c-fold iteration of π−1, and H is a hash function modeled as a random oracle. The
constrain algorithm will then be the following (we identify the circuit constraining to the range
{0, . . . , n} with the integer n):

F̃ .Constrain((SK, ST0), n) = (PK,π−nSK (ST0), n) = (PK, STn, n).

Finally, the constrained evaluation function is

F̃ .Eval((PK, STn, n), c) = H(πn−cPK (STc)).

We could easily reduce the constrained-PRF security of F̃ to the hardness of the RSA assumption,
and directly deduce the security of Σoφoς from Theorem 4.4.

Yet, there is a subtle di�erence between Σoφoς and this RSA-based instantiation of FS-RCPRF:
Σoφoς uses a single key pair for the entire scheme, while here, we would have one key pair per
keyword. Seen otherwise, Σoφoς uses a single constrained PRF, which is constrained both on ranges
and on keywords. We could have written such a generalization of FS-RCPRF, but it would have
made the proof more complicated than the one of Theorem 4.4, without clear conceptual bene�ts.

4.6.2 Diana, a GGM Instantiation of FS-RCPRF

In this section we present a range-constrained PRF and then use it to instantiate FS-RCPRF.
We can easily construct a simple and e�cient range-constrained PRF from the tree-based GGM

PRF [GGM84]. This instantiation has been described by Kiayias et al. [KPTZ13] and is called best
range cover (BRC).

Let G : {0, 1}λ → {0, 1}2λ be a pseudo-random generator (PRG), G0(k) and G1(k) be respec-
tively the �rst and second half of G(k). The GGM PRF on n-bit integers is de�ned as

FK(x) = Gx0(Gx1(. . . (Gxn−1(K))))

where xn−1 . . . x0 is the binary representation of x =
∑n−1

i=0 2ixi. The leaves of the tree are the
output values of F , and they can be labeled according to the corresponding input, and the partial
evaluation of F (i.e. the iterated evaluation of G, but only on the �rst m < n bits) are the inner
nodes of the tree.

To constrain F to the input range [0, c−1], we generate the nodes of the tree covering exactly the
leaves with labels in [0, c−1]. In practice if the binary representation of c is cn−1 . . . c0, the punctured
key would be

{
G0(Gci−1(. . . (Gcn−1(K)))

}
for all i such that ci = 1. Figure 4.2 represents the

token generation in Diana.

We use the above range CPRF to instantiate FS-RCPRF and call this instantiation Diana. Note
that, Diana is almost identical to the ARX-EQ scheme [PBP16]. However ARX-EQ was not formally
proven, and FS-RCPRF provides a more general framework on how to construct forward-private
SSE schemes.
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Figure 4.2 – Token generation in Diana for a keyword w and a tree of depth n. Each operation
(represented by arrows) is one way.

Let us analyze the e�ciency of Diana. Updates requireO(log nmax ) computation from the client,
where nmax is the maximum number of entries matching a keyword: the CPRF computes a tree’s
leaf from its root. Similarly, during search, the server has to compute all the leaves of the tree within
a given range. This can be done e�ciently in O(nw ) calls to the PRG, where nw is the number of
matches on search keyword w: there are O(nw ) tree nodes to compute in total and each node can
be generated using a single PRG call. In terms of communication complexity, Diana is optimal for
updates, and sends O(log nw ) tree nodes during a search query.

In theory, this is worse than Σoφoς ’ optimal computational and communication complexity, but,
as we will see in Section 4.7, Diana uses symmetric primitives that are much faster than Σoφoς’
RSA. Also, since nodes in the tree will be 128 bit keys, we can set nmax to 232 and still have search
tokens only twice as big as Σoφoς’ 2048 bits tokens.

4.7 Implementation and Evaluation of Σoφoς and Diana

In this section, we describe an implementation of Σoφoς and Diana, report and analyze the perfor-
mance of these schemes.

4.7.1 Implementation Details

Both Σoφoς and Diana have been implemented in C/C++ (and a little bit of assembly), representing
about 5000 lines of code for the schemes per se, and 14 000 lines for the cryptographic toolkit (of
which not all components are used in the implementation of Σoφoς and Diana). The code is open
source and freely accessible [Bos17]

The primitives we used are the following. For the trapdoor permutation, we used RSA. The RSA
implementation uses OpenSSL’s BigNum library. The PRF F and the keyed hash function H are
instantiated using HMAC, and we chose Blake2b [SA15] as the underlying hash function. For the
GGM range-constrained PRF F̃ , we used AES in counter mode for the pseudo-random generator G.
The keyed hash function H used in Diana (and Diana only) is the AES block cipher [Pub01] used in
Matyas-Meyer-Oseas mode [PGV94].

Aside from cryptographic components, we needed a persistent key-value store, and an RPC
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framework. We chose RocksDB [Fac17] for the former, and gRPC [Goo17] for the latter, for their
ease of use and their performance. Figure 4.3 presents the architecture of our implementation.

Client Server

Σoφoς Diana Janus

PRF Hash . . . TDP

Schemes

Crypto.
Toolkit

Runners

OpenSSL
Relic

RocksDB

gRPC

Figure 4.3 – Software architecture of our implementation of symmetric searchable encryption
schemes (OpenSSE). This diagram also includes the scheme Janus, which will be
presented in Chapter 5.

Parameters. Cryptographic keys are 128 bits long for symmetric primitives, and we chose to use
2048 bits RSA keys, with a public exponent �xed to 3.

Our system can easily be scaled to support databases with up to 264 keyword/document pairs, but
to avoid unnecessary overhead for our experiments using much smaller database, we �xed N ≤ 248,
K ≤ 248, and the maximum matching documents per keyword nmax ≤ 232 . We set µ, the length
of the update tokens, to 128 bits, leading to an incorrectness probability of 2−32 for the maximum
size database.

4.7.2 Experimental Setting

All the experiments were run on a desktop computer with a single Intel Core i7 4790K 4.00 GHz
CPU (with 8 logical cores), 16 GB of RAM, a 250 GB Samsung 850 EVO SSD, running on OS X.10.

We tested our schemes on randomly generated databases of di�erent sizes. The characteristics of
the databases are given in Table 4.2, as well as the size of the encrypted database, and the size of the
client’s state (i.e. the size of W).

Table 4.2 – Size of the evaluation databases.

(a) Σoφoς’ evaluation databases. The last database
is the English Wikipedia.

K N W EDB

2.33× 104 1.4× 106 572 kB 64.0 MB
2.13× 105 1.4× 107 4.81 MB 512 MB
2.11× 106 1.4× 108 64.2 MB 5.25 GB
4.60× 106 1.39× 108 128 MB 5.25 GB

(b) Diana’s evaluation databases.

K N W EDB

2.22× 105 1.9× 107 4.6 MB 615 MB
2.68× 106 1.9× 108 46 MB 6.3 GB
2.18× 107 1.9× 109 365 MB 47 GB
4.29× 107 3.8× 109 720 MB 95 GB
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Figure 4.4 – Performance of Σoφoς’ and Diana’s and search protocol (server side). log-log scale.

4.7.3 Results and Interpretation

The performance results of keyword searches are presented in Figure 4.4. This �gure only accounts
for the running time on the server side, without the RPC costs – we focus on the core of the
algorithm. The timings given here are means of the elapsed search time per found document, taken
over between 1000 queries (for queries matching a small number of results relatively to the size of the
dataset) to 30 queries. This allows us to exhibit some real-world side e�ects in our implementation.

The �rst thing we can notice in the timings, is that the larger the result set, the faster the search
algorithm (again, on a per matching document basis). We explain that by the cost of multi-threading,
and by the storage latency: even if the RSA or GGM pseudo-random function computations are
fully parallelized, adding an index to the result list is not, and accessing the disk induces some wait.
Hence, at the beginning of the search algorithm, RSA operations will not be fully interleaved with
disk accesses (like they are for a su�ciently large result set), we will pay for the latency induced by
mutexes and storage accesses. Also, in the case of small result sets, some one-time costly operations
(such as creating threads) are not amortized, and in some cases, using several threads might actually
hinder the performance.
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Cryptography vs. locality vs. OS caching. Figure 4.4 displays three groups of graphs. At
the bottom, we have Diana with the smallest databases, then Σoφoς with databases smaller or
equivalent to the smallest datasets of Diana, and at the top, Diana with the two largest datasets.
Also, the performances of Σoφoς and Diana on small result sets and small databases is very similar,
but diverge once the result set grows. How can we explain that?

The latter (similar performance for small result set followed by a divergence of the performance)
can easily be explained similarly as above, by the fact that some one-time costly operations get
amortized when the number of matches grows.

Also, the discrepancy between the e�ciency of Σoφoς and Diana search algorithm for databases
of similar size, and result sets of identical size can easily be explained by the performance gap
between the RSA’s public key operations and hardware-accelerated AES.

The last interrogation is about the (seemingly) bad performance of Diana with large database
compared to Σoφoς and Diana with smaller datasets. This cannot be explained by the algorithms’
di�erence, as, from that point of view, Diana should perform a lot better than Σoφoς in practice
— this was con�rmed by the experiments, as we just mentioned. Also, this would not explain the
fact that Diana on large datasets is slower by two to three orders of magnitude than Diana on small
datasets.

One important thing to notice is that all the experimental encrypted databases, except the two
largest ones for Diana, hold in the RAM of the testing computer. Indeed, for the former ones,
the operating system cached all the encrypted database — as con�rmed by using the vmtouch
tool [Dou17] — and many non-volatile-storage-induced performance issues disappeared, among the
�rst being the lack of locality in the accesses.

With in-memory storage, the need of local accesses in no longer necessary, as the bottleneck
becomes indeed the cryptographic operations. When the on-disk storage actually has to be accessed,
this is not true anymore: the latency of the storage is a lot higher than the cryptographic operations
overhead, even for asymmetric cryptography.

Here, we have a blatant example of the in�uence of storage locality on the performance of SSE
schemes. Hence, for large datasets IO costs outweigh the cost of cryptographic primitives, making
the latter “almost free”. In particular, for larger datasets than the ones tested here, Σoφoς would
encounter similar IO bottleneck, and would perform (almost) as well as Diana on large inputs.

Finally, the rise of high-performance low-latency storage with SSDs gives a hope that non-
locality would be less of a burden in the future. Namely, the data sheet of the SSD used in our
experiments announces 98 000 random 4 kB reads per second [Sam16], which is of the order of what
we experienced (about 16 000 fetched entries per second), while some high-end SSDs are suppose to
achieve up to 430 000 random reads per second, with a 20 µs latency [Int].

Update throughput. The major practical drawback of Σoφoς is its update throughput. Indeed,
it can only insert 4300 new entries per second on our test machine. The bottleneck is clearly the
computation of the new search token used to derive the update token. In particular, we pay for the
fact that private key operations are a lot more expensive than public key operations (to a factor 30
on our computer).

Diana completely solves this problem, achieving an update throughput of more than 174 000
entries per second. The bottleneck is no longer the cryptography, but the use of locks to ensure the
thread-safety, and the networking costs.
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Backward Privacy 5
I

n the previous chapter, we studied the forward privacy property of searchable encryp-
tion schemes, which ensures that newly updated entries cannot be related to previous
search results, until a new search query is performed. Another natural notion of privacy

is that of backward privacy: search queries should not leak matching entries after they have been
deleted. As such, backward privacy is closely related to secure deletion: we want to make sure that
the server cannot recover deleted information.

In all the constructions studied earlier, deletions were supported using a sort of revocation list. In
particular, the server still has access to the deleted information, while, paradoxically, the owner of
the data, the client, does not. Achieving backward privacy is hence very important to withstand
subpoena, o�ering a kind of deniable searchable encryption.

The backward privacy property had been informally introduced by Stefanov et al. in [SPS14], but
was kept mainly overlooked until our work with Minaud and Ohrimenko [BMO17]. This chapter
takes this work up by formulating formal security de�nitions for several forms of backward privacy,
and building four dynamics schemes, Fides, Moneta, Dianadel and Janus, satisfying these de�nitions
with various e�ciency tradeo�s, using forward private SSE schemes, and cryptographic primitives
allowing for �ne-grained control, such as puncturable PRF and puncturable encryption.
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5.1 De�nition of Backward Privacy

At a high level, forward privacy considered privacy of the database and earlier search queries during
updates, while backward privacy captures privacy of the database and updates to it during search
queries. In this section, we formally de�ne these privacy properties.

Backward privacy limits the information on the updates a�ecting keyword w that the server
can learn upon a search query on w. Informally, an SSE scheme is backward-private (or backward-
secure) if, whenever a keyword/document pair (w, ind) is added into the database and then deleted,
subsequent Search queries on w do not reveal ind [SPS14]. Note that ind is revealed if a Search
query is issued after (w, ind) is added, and before it is deleted.

Hence, we could argue that backward-private schemes are those whose search leakage is only a
(stateless) function of DB(w), as this would only reveal information about documents currently in
the database (and not the deleted ones). However, this is not enough, as, even though the search
leakage is reduced to DB(w), the update leakage could reveal the modi�ed document/keyword pairs.
A scheme with such leakage would reveal the indices of deleted documents, as the attacker could
keep track of all the updated pairs, which is exactly what we want to prevent. As a consequence, in
the security de�nitions, we must explicitly rule out such update leakage.

Moreover, obtaining a scheme with leakage that depends only on DB(w) would require hiding
the pattern of updates as well as their number. Although hiding the former could be achieved, for
example, using ORAM, this would result in expensive schemes. As a consequence, we de�ne four
�avors of backward privacy of decreasing strength, depending on how much metadata leaks about
the inserted and deleted entries:

0. Strong backward privacy:
leaks only the documents currently matching w.

I. Backward privacy with insertion pa�ern:
leaks the documents currently matching w, when they were inserted, and the total number of
updates on w.

II. Backward privacy with update pa�ern:
leaks the documents currently matchingw, when they were inserted, and when all the updates
on w happened (but not their content).

III. Weak backward privacy:
leaks the documents currently matching w, when they were inserted, when all the updates on
w happened, and which deletion update canceled which insertion update.

Let us demonstrate the di�erences between these notions with a simple example. Consider the
following sequence of updates, in the order of arrival: (add, ind1, {w1, w2}), (add, ind2, {w1}),
(del, ind1, {w1}), (add, ind3, {w2}). Let us consider the leakage for each de�nition after a search
query on w1. The �rst notion (notion 0) reveals only ind2. The notion I reveals ind2 and that this
entry was added at time 1. It also reveals that there were a total of 3 updates for w1. The notion II,
additionally reveals that updates on w1 happened at time 1, 2, and 3. Finally, the last de�nition also
reveals that the index that was added for w1 at time 1 was removed at time 3. Table 5.1 summarizes
the e�ciency of di�erent dynamic schemes, and their level of backward privacy.

In order to capture these notions, we will need some of the leakage components de�ned in
Section 3.2.2, such as up, TimeDB, or DelHist. With these tools, we can formally de�ne our four
notions of backward privacy.
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De�nition 5.1 (Backward Privacy). AnL-adaptively-secure SSE scheme is strongly backward-private
if and only if the search and update leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op)

LSrch(w) = L′′(DB(w)),

where L′ and L′′ are stateless.
An L-adaptively-secure SSE scheme is insertion pattern revealing backward-private if and only if

the search and update leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op)

LSrch(w) = L′′(TimeDB(w), aw),

where L′ and L′′ are stateless.
An L-adaptively-secure SSE scheme is update pattern revealing backward-private if and only if the

search and update leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),Updates(w)),

where L′ and L′′ are stateless.
An L-adaptively-secure SSE scheme is weakly backward-private if and only if the search and update

leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),DelHist(w)),

where L′ and L′′ are stateless.

We can clearly see that backward privacy with insertion pattern implies update pattern revealing
backward privacy, which itself implies weak backward privacy. Also observe that an insertion
pattern revealing backward-private scheme has to be forward-private, and that if a scheme is both
forward-private and weakly backward-private, then the leakage of update queries cannot depend on
either the updated keyword (by de�nition of forward privacy) or the updated document index (by
de�nition of weak backward privacy), so the leakage must be limited to the nature of the operation.
This will indeed be the case for all schemes considered in this thesis.

Finally, a strongly backward-private scheme has to hide the insertion pattern and can only be
instantiated using oblivious RAM. We will not try to achieve this level of security in the following
sections.

5.2 A Generic Two Round-trips Backward-Private Scheme

In this section, we show how to build a simple backward-private SSE scheme B(Σ) starting from an
arbitrary SSE scheme Σ. We start with a basic solution for clarity, then improve on it.

We alter Σ as follows. Instead of storing a document index ind, the client uploads a ciphertext
EKw(ind, op), where EKw is a secret-key encryption scheme and op ∈ {add, del}. The key Kw is
speci�c to keyword w and is chosen by the client. The server sees only the resulting ciphertexts as
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Kw’s are never revealed to it. The scheme Σ otherwise runs as normal. In particular, Search queries
return the set of matching encrypted document indices EKw(ind, op). The client can then decrypt
this set, remove deleted indices, and obtain the �nal set of document indices matching w.

A description of B(Σ) is provided in Algorithm 5.9. Letting I denote the set of document indices,
we assume I × {add, del} embeds into the plaintext space of EK , and we use the ciphertext space
of EK as the set of document indices for Σ. Note that Σ only needs to support add queries. The
scheme B(Σ) achieves update pattern revealing backward privacy, as Σ can leak any information
about the modi�ed keyword during updates, and some access pattern information during search.
However, if Σ does not reveal any information about the past updates (i.e., if Σ does not leak
UpHist(w) but only DB(w)), we can show that B(Σ) guarantees backward-privacy with insertion
pattern leakage. Unfortunately, the only dynamic schemes which do not reveal UpHist(w) are based
on ORAM, such as TWORAM [GMP16].

Algorithm 5.9 Generic backward-private scheme B(Σ) where Σ is an arbitrary SSE scheme and F
is a PRF.
Setup(DB) :

1: Σ.Setup(DB), KΣ
$← {0, 1}λ

Search(KΣ, w, σ; EDB)

1: Client and Server run Σ.Search(w), the client gets the list of results R.
Client:

2: Kw ← F (KΣ, w)
3: Decrypt R as (EKw(ind1, op1), . . . , EKw(indn, opn))
4: Return {ind : ∃i, (indi, opi) = (ind, add) ∧∀j > i, (indj , opj) 6= (ind, del)

}
Update(KΣ, add, w, ind, σ; EDB)

1: Client: Kw ← F (KΣ, w)
2: Client and Server run Σ.Update(add, w,EKw(ind, op))

The B(Σ) scheme, as described so far, has two drawbacks. The �rst drawback is that the server
does not learn document indices in the clear and, hence, cannot return the matching documents.
This is �ne for a result-hiding scheme. However, a common use case of SSE schemes is to return
actual documents, which are stored separately in an encrypted form. B(Σ) can support this case
with an additional round-trip as follows. After the client computes the result of a search query, he
sends document indices in the clear to the server. The server is then able to send the documents to
the client. Hence, B(Σ) is two round-trips protocol, assuming Σ requires a single round-trip for its
queries.

The second drawback of B(Σ) is that deleted elements are never deleted on the server side.
Moreover, since deleted elements are returned to the client on each search query, this also a�ects
the communication cost and the amount of work necessary on the client side. We notice that this
overhead can be avoided in the common scenario outlined above where the client sends cleartext
document indices back to the server. In particular, it su�ces for the client to send, together with
the list of cleartext indices, an encryption of the same indices with a new key. Recall, that this list
contains only the relevant indices with deleted elements removed by the client. Hence, the server
can delete the old encrypted entries in the database and insert the updated ones. Essentially we are
piggybacking a cleanup procedure on top of the Search protocol.

We denote a generic solution based on the above idea as B′(Σ) and describe it in Algorithm 5.10.
In B′(Σ), the client keeps track of the number of times each keyword w has been queried in table



102 Chapter 5 Backward Privacy

Algorithm 5.10 Improved generic backward-private scheme B′(Σ).
Setup(DB) :

1: T[w]← 0 for all w, KΣ
$← {0, 1}λ

2: DB′ ← DB where keywords w are replaced by w||0
3: Σ.Setup(DB′)

Search(KΣ, w, σ; EDB)

1: Client: Kw ← H(KΣ, w,T[w])
2: Client and Server run R← Σ.Search(w||T[w]) . Server can erase all retrieved elements from

memory
Client:

3: Decrypt R as (EKw(ind1, op1), . . . , EKw(indn, opn))
4: R′ ← {ind : ∃i, (indi, opi) = (ind, add) ∧∀j > i, (indj , opj) 6= (ind, del)

}
5: Send R′ to Server
6: T[w]← T[w] + 1
7: for all ind ∈ R′ do . In parallel
8: Run Update(KΣ, add, w, ind, σ; EDB)
9: end for

Update(KΣ, add, w, ind, σ; EDB)

1: Client: Kw ← H(KΣ, w,T[w])
2: Client and Server run Σ.Update(add, w||T[w], EKw(ind, op))

T. Each time a search query is issued, results are re-encrypted using a fresh key derived from w
and T[w]. Keywords w in Σ are replaced by w||T[w], where || denotes concatenation. In line 7
of the algorithm, re-encrypted indices are sent as Update queries for the sake of having a generic
solution. However, typical SSE schemes would allow all updates to be performed at once in a single
round-trip. We also expect that concrete choices of Σ may allow further optimisations. For example,
directly using a result-hiding scheme for Σ would avoid having to encrypt the (ind, op) pairs before
inserting them in Σ.

The scheme B′(Σ) is intuitively backward-private since the server learns document indices only
after the client has removed deleted indices. Moreover, since document indices are re-encrypted
after each search, it achieves the notion of update pattern revealing backward privacy in the sense
of De�nition 5.1.

5.2.1 Fides: A Baseline Forward and Backward Private SSE Scheme

We can now brie�y describe Fides, the instantiation ofB′ using Σoφoς (recall that Σoφoς is forward-
private, but not backward-private). Fides guarantees forward privacy and update pattern revealing
backward privacy. The former is due to the underlying SSE scheme, Σoφoς , being forward-private,
while the latter is the result of the B′ construction. The formal statement on Fides’ security is given
by Theorem 5.1.

Theorem 5.1. De�ne LFides as:

LSrch
Fides(w) = (DB(w),Updates(w)),

LUpdt
Fides(op, w, ind) = ⊥.
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Fides is LFides-adaptively-secure. In particular, Fides is both forward-private and update pattern
revealing backward-private.

Let us analyze Fides’ performance. Recall that Σoφoς is optimal for search and updates in terms
of computation and communication. In contrast, Fides takes two rounds during search and has
O(aw ) computation and communication complexity, where aw is the total number of update entries
matching w. The cost of O(aw ) is the worst case scenario since this cost can be amortized over all
search queries for w. Similar to Σoφoς , the updates in Fides are optimal (constant communication
and computation).

Fides can be seen as a baseline for forward- and backward-private designs: it is simple to build,
o�ers moderate computation overhead, and achieves a good level of security. In the next sections,
we will propose schemes that avoid ine�ciencies such as the additional round-trip and the high
communication overhead at the cost of being only weakly backward-private.

5.2.2 Moneta: An (Almost) Strongly Backward Private Scheme

We note that B′(Σ) may achieve a stronger de�nition if one makes further assumptions on how
updates are carried out in Σ. In particular, we name the B′(TWORAM) instantiation Moneta.
Moneta achieves backward privacy with insertion pattern, but at a very high computational and
communication cost due to the use of TWORAM.

Theorem 5.2. De�ne LMoneta as:

LSrch
Moneta(w) = (DB(w), aw),

LUpdt
Moneta(op, w, ind) = ⊥.

Moneta is LMoneta-adaptively-secure. In particular, Moneta is both forward-private and insertion
pattern revealing backward-private.

Note that Moneta is almost strongly backward private but still leaks the number of insertions
and deletions performed

Hence, Moneta is more secure than Fides, but has a worse computational complexity. Indeed,
The search complexity is Õ

(
(aw + dw + nw) logN + log3N

)
= Õ

(
aw logN + log3N

)
, and the

update complexity is Õ
(
log3N

)
, which does not make it really practical.

5.3 Dianadel: Backward Privacy from Range-Constrained and
Puncturable PRFs

The FS-RCPRF construction, and its instantiation Diana (cf. Section 4.6), do not support deletions.
Schemes of this type can be extended to support deletions by letting the client and the server
maintain two instances of the construction, one for insertions and one for deletions. Then, during
a search query, the server can compute the di�erence between the two result sets to compute the
list of documents matching the query (i.e., without the deleted entries). This solution, however,
is not backward-private as the server trivially learns the deleted entries. To this end, we propose
FS-RCPRFdel, which also uses two SE instances but exploits constrained PRFs to guarantee weak
backward privacy.

The key idea behind FS-RCPRFdel is to extend the set of constraints supported by the underlying
constrained PRF used in Section 4.6.1. In order to support backward privacy, we make use of
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constrained PRF F̃ that is not only range-constrained (for forward privacy) but is also punctured on
the deleted entries (for backward privacy). Hence, the constrained key of F̃ enforces the predicate
Cc,x1,...,xn(x) = 1 if and only if x ∈ [0, c] and ∀i, x 6= xi. The values x1, . . . , xn correspond to
deleted entries that the server should not learn. Unfortunately, a naive implementation of F̃ requires
the client to store all deleted entries x1, . . . , xn since the order of deletions and insertions can be
arbitrary. Our construction avoids this storage overhead on the client’s side by letting the server
store the deleted entries in an encrypted form.

We now combine the above ideas and describe FS-RCPRFdel. The client and the server maintain
two forward-private SE instances: one for insertions and one for deletions. Every time the client
wants to insert (w, ind) with the counter c, it proceeds as in FS-RCPRF and inserts the pair in the �rst
SE instance, as in Algorithm 4.6. In addition, it also pushes the pair (F ′(Kw, (w, ind)), EncK′(c)),
where F ′ and Enc are a PRF and a CPA encryption scheme, to the server who stores these pairs in
a map. In order to delete (w, ind), the client inserts the entry (w,F ′(Kw, (w, ind))) in the second
SE instance. Then, during search query for w, the client proceeds as follows. It requests a search for
w on the second SE instance (i.e., the one that stores deleted entries). As a result, the server gets the
associated tags F ′(Kw, (w, ind)) for the deleted entries, uses them to retrieve encrypted xi’s from
the map, and sends them back to the client. The client then constrains the PRF using the xi’s and
uses it to run a search on the �rst SE instance. Note that this solution assumes that the same index
ind is never reused: once the entry (w, ind) has been deleted, it can no longer be re-added.

The above solution is not ideal as it requires an additional roundtrip with large communication
from the server to the client. Also, it can only guarantee weak backward privacy, as the server learns
when the deletions occurred.

Similar to FS-RCPRF, we instantiate FS-RCPRFdel with the GGM PRF and call the resulting scheme
Dianadel. The constrained key, instead of consisting of the covering nodes of the full range as
in Section 4.6.2, will be constructed as the set of nodes covering the ranges [0, x1 − 1], [x1 +
1, x2 − 1], . . . , [xn + 1, c] (assuming that xi’s are in increasing order). We indeed combine a range-
constrained PRF (constrained on the range [0, c]) and a punctured PRF (punctured on the points
x1, . . . , xn). This approach will result in large keys when the number of deletions is large: the
number of tree nodes to be sent will be in the order of dw · log(nw/dw). (assuming uniformly
distributed deletions).

5.4 Janus: Weak Backward Privacy from Puncturable Encryption

The solutions presented in Section 5.3 su�er from high ine�ciencies, by requiring either client storage
linear in the number of deletions, or multiple round-trips with high communication complexity.
In this section, we show how to achieve (weak) backward security in a single round-trip, using
puncturable encryption with incremental punctures.

5.4.1 Puncturable Encryption

A puncturable encryption (PE) scheme is a public-key encryption scheme that allows for puncturing
the secret key to prevent the decryption of some messages. More precisely, for such schemes, the
plaintexts are encrypted and attached to a tag, and the secret key is punctured on a set of tags so
that decryption of ciphertexts attached to those tags is impossible. Puncturable encryption has
been introduced by Green and Miers as a way to achieve forward security in an asynchronous
setting [GM15]. We adopt the same formalism and de�nitions, except we �x the number of tags per
message to 1.
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A puncturable encryption scheme PPKE with message spaceM and tag space T is a triple of
algorithms (KeyGen,Encrypt,Puncture,Decrypt) with the following syntax:

• KeyGen(1λ) outputs a public key PK and an initial secret key SK0.

• Encrypt(PK,M, t) outputs the encryption CT of M ∈M attached to the tag t ∈ T .

• Puncture(SKi, t) outputs a new secret key SKi+1 able to decrypt any ciphertext SKi can
decrypt, except for ciphertexts encrypted with the tag t.

• Decrypt(SKi, CT, t) outputs a plaintext M or ⊥ if the decryption fails.

Correctness is achieved if a plaintext M encrypted with tag t decrypts back to M when using the
secret key punctured on any set of tags that does not contain t.

The IND-PUN-ATK security de�nitions – with ATK ∈ {CPA,CCA} – capture the security of
puncturable encryption. We recall the IND-PUN-CPA game (we will not use CCA security in this
work) in a simpli�ed version.

De�nition 5.2 (Security of puncturable encryption). Let PPKE be a puncturable encryption scheme.
The advantage of an adversary A against PPKE in the IND-PUN-CPA security game is

Advpun-cpa
PPKE,A(λ) =

∣∣∣∣12 − P[GA
pun-cpa(λ) = 1]

∣∣∣∣
where Gpun-cpa is the game de�ned in Figure 5.1. We say that PPKE is IND-PUN-CPA secure if, for
every polynomial-time adversary A,

Advpun-cpa
PPKE,A(λ) ≤ negl(λ) .

Init()

(PK,SK0)← PPKE.KeyGen(1λ)

b
$← {0, 1}

n
$← 0, corrupt← false

P ← ∅, C ← ∅, T ← ∅
Challenge(M0,M1, t)

if corrupt = true and t ∈ C then
return ⊥ . Reject the query

else
CT ← PPKE.Encrypt(PK,Mb, t)
T ← T ∪ {t}
return CT

end if

Puncture(t)

n← n+ 1, P ← P ∪ {t}
SKn ← PPKE.Puncture(SKn−1, t)

Corrupt()

if corrupt = false and T ⊆ P then
corrupt← true, C ← P
return SKn

else
return ⊥ . Reject the query

end if
Final(b′)

if b = b′

return 1 . The adversary wins
return 0 . The adversary loses

Figure 5.1 – Procedures of the Gpun-cpa security game. The game ensures that the adversary can
get challenge ciphertexts only for tags on which the secret key has been punctured.
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In the Janus construction, described in Section 5.4.3, we will encrypt the document indices using
puncturable encryption, with tags that are pseudo-randomly generated from the document-keyword
pairs. There will be a di�erent key for each keyword, and when we want to delete an entry for
a speci�c keyword, we will puncture the associated key on the tag derived from the document-
keyword pair. Upon a search query, the client will give to the server the associated punctured secret
key, with which he will only be able to decrypt non-deleted entries.

In this paper, we will use the Green-Miers puncturable encryption scheme [GM15], described in
Algorithm 5.11. In [GM15], the authors show that their construction is IND-PUN-ATK secure if
the Decisional Bilinear Di�e-Hellman (DBDH, cf. Section 2.2.2) hold in the groups G1 = G2 = G
and GT .

Algorithm 5.11 The Green-Miers puncturable encryption scheme, for message of m bits
KeyGen(1λ)

1: Choose a group G of prime order p and generator g, and the hash functions H : {0, 1}∗ → Zp,
H ′ : GT → {0, 1}m.

2: α, β, γ, r
$← Zp. g1 ← gα, g2 ← gβ .

3: De�ne q(x) = β + γ · x and V (x) = gq(x).
4: Let t0 be a distinguished tag, not to be used.
5: return PK = (g, g1, g2, g

q(1)), SK0 = [sk
(1)
0 = gα+r

2 , sk
(2)
0 = V (H(t0))r, sk

(3)
0 = gr, t0].

Encrypt(PK,M, t) (M ∈ {0, 1}m, t 6= t0)

1: s
$← Zp

2: return (ct(1) = M ⊕H ′ (e(g1, g2)s) , ct(2) = gs, ct(3) = V (H(t))s)

Puncture(SKi, t) (t 6= t0)

1: Parse SKi as [sk0, sk1, . . . , ski], and sk0 as (sk
(1)
0 , sk

(2)
0 , sk

(3)
0 , t0)

2: λ, r0, r1
$← Zp

3: Compute sk′0 ← (sk
(1)
0 · g

r0−λ′
2 , sk

(2)
0 · V (H(t0))r0 , sk

(3)
0 · gr0 , t0)

4: Compute ski+1 ← (gλ
′+r1

2 , V (H(t))r1 , gr1 , t)
5: return [sk′0, sk1, . . . , ski, ski+1]

Decrypt(SKi, CT, t)

1: Parse CT as (ct(1), ct(2), ct(3)), SKi as [sk0, sk1, . . . , ski].
2: For j = 0, . . . , i, parse skj as (sk

(1)
j , sk

(2)
j , sk

(3)
j , tj)

3: Compute ωj , ω′j s.t. ω′j · q(H(tj)) + ωj · q(H(t)) = q(0) = β

4: Zj ←
e(sk

(1)
j ,ct(2))

e
(
sk

(3)
j ,(ct(3))

ωj
)
·e
(
sk

(2)
j ,ct(2)

)ω′
j

5: return ct(1) ⊕H ′
(∏i

j=0 Zj

)

5.4.2 Incremental Puncture

The punctured keys will (often) grow with the number of punctures (or be very large), and it will be
impractical to store them on the client side. To avoid this issue, we use an additional feature of the
Green-Miers scheme, which we call incremental puncture.
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In our setting, we will see that it is very handy to be able to express the Puncture algorithm as a
function of a constant-sized fraction of the secret key. The secret key of the Green-Miers puncturable
encryption scheme is, after n punctures, SKn = (sk0, sk1, . . . , skn), and the puncture algorithm is
such that

Puncture(SKn, t) = (sk′0, sk1, . . . , skn, skn+1)

where (sk′0, skn+1) = IncPuncture(sk0, t).

By using this PE scheme, the client will only have to store the sk0 part of the secret key, and
outsource the rest to the server. The client’s storage will stay linear in the number of keywords, and
most of the storage burden will still be born by the server.

5.4.3 The Janus Construction

Janus, similar to the constructions in Section 5.3, uses two forward-secure searchable encryption
instances: Σadd to store the newly inserted indices encrypted with the puncturable encryption
scheme (the insertion instance), and Σdel to store the punctured key elements (the deletion instance).
There is a di�erent puncturable encryption key for each keyword and the client stores the sk0 part
of each key locally. During the search for w, the client sends the associated key part and runs the
search protocol of the SE scheme for both instances. As a result, the server obtains the encrypted
indices from the insertion instance and all the remaining key parts from the deletion instance. He
will then be able to decrypt all the non-deleted (i.e. not punctured) indices.

Still, there is an important problem to tackle: once the secret key for w has been revealed to the
server, it can no longer be used by the client to encrypt the index of the documents matching w
that will be inserted in the future. As a consequence, we need to change the encryption key after
every search. Yet, we do not need to re-encrypt the already revealed indices (a.k.a. the result indices)
with the new key: the adversary already learned them, and, as the Σadd and Σdel schemes used in
practice will leak the search pattern, he can keep track of the results over repeating search queries.

So, in the �rst version of our construction, the server will explicitly keep the results in a cache.
This cache is also interesting from a performance point of view: each matching index will be
decrypted at most once, and all the results from previous searches on a given keyword can be stored
close to each other, increasing storage locality.

Description of Janus. Janus is described in Algorithm 5.12. It uses two response-revealing
dynamic SSE schemes Σadd and Σdel supporting the insertion of atomic entries. Σadd and Σdel might
be di�erent for e�ciency or security purposes, but in the proof, we will assume that they are both
forward-private. Janus also uses a PRF F and an incremental puncturable encryption scheme PPKE.

The client stores locally a table containing for each keyword w the initial key share sk0[w] of
a puncturable encryption scheme (without loss of generality we can assume that this key share
contains the public key). To insert a new entry (w, ind), the client encrypts it with the PE scheme
with the key sk0[w], using a pseudo-random value FKtag(w, ind) as a tag. He then inserts this
ciphertext as a new entry matching w in Σadd. To delete the entry (w, ind), the client computes the
tag t = FKtag(w, ind) and (incrementally) punctures sk0[w] on this tag. He then updates the initial
key share of w and pushes the new key element skt to the server by inserting the entry (w, skt)
in Σdel. Finally, to search, the client runs a search on w for both Σadd and Σdel. The server now
has access to the ciphertexts encrypting the inserted indices and to the key elements necessary to
decrypt them. Note that he will only be able to decrypt the ciphertexts for which the key has not
been punctured, i.e. the non deleted entries.
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After a search query on w, the same encryption key cannot be used to encrypt new entries
matching w: the server can reuse the old key to decrypt even the newly deleted entries since the
key would not have been punctured on the corresponding tags. Janus avoids this by requiring the
client to generate a new key for w after a search and encrypt new entries of w using this key. As
discussed earlier, the server can keep the results of previous search queries and retrieve them the
next time w is searched. This does not a�ect the security of the scheme since the server has already
learnt earlier search results on w.

Security of Janus. Janus is a forward-private and weakly backward-private SSE scheme. The
former comes directly from the forward security of Σadd and Σdel. Let us consider backward security.
The server has access to the decryption key of w’s entries only during the search query for w.
Moreover, this key allows her to decrypt only the entries that have been added since the last search
for w and have not yet been deleted. Hence, the deleted indices remain hidden. Note that weak
backward security is the strongest de�nition we can achieve with Janus as the server can determine
which of the inserted queries were later deleted as well as the timestamps of these events. Also note
that Janus does not allow re-insertion of document/keyword pairs that were previously deleted.

Theorem 5.3 (Adaptive Security of Janus). If Σadd and Σdel are two LFP-adaptively-secure SSE
schemes, PPKE is IND-PUN-CPA secure, and F is a PRF, then Janus is LwBS-adaptively secure,
with LwBS = (LSrch

wBS ,L
Updt
wBS) de�ned as

LSrch
wBS(w) = (sp(w),TimeDB(w),DelHist(w))

LUpdt
wBS(op, w, ind) = op.

Note that in this theorem, LFP speci�cally refers to the leakage of a forward-secure scheme as
de�ned in De�nition 4.3. Namely,

LSrch
FP (w) = (sp(w),Hist(w)),

and LUpdt
FP (op, w, ind) = op,

Proof. Again, we proceed by game hops.

Game G0. This game is the real world SSE security game SSEReal.

P[SSERealAJanus(λ) = 1] = P[G0(1λ) = 1]

Game G1. In this game, we replace the calls to the PRF F with key KS (resp. Ktag) by picking
new random outputs every time a previously unseen keyword (resp. document-keyword pair) is
used. These strings are stored in a table to be reused every time F is again queried on w (resp.
(w, ind)). Replacing F with key KS this way induces a distinguishing advantage equal to the PRF
distinguishing advantage for an adversary making W calls to F . Doing the same for F with key
Ktag induces a distinguishing advantage equal to the PRF distinguishing advantage for an adversary
making N calls to F . Hence, the adversarial distinguishing advantage between G0 and G1 is exactly
twice the distinguishing advantage for the PRF F : we can build a reduction B1 making at most N
calls on F such that

P[G0(1λ) = 1]− P[G1(1λ) = 1] ≤ 2 · Advprf
F,B1

(λ).
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Algorithm 5.12 Janus: weakly backward-secure SSE.
Setup()

1: (EDBadd,Kadd, σadd)← Σadd.Setup()
2: (EDBdel,Kdel, σdel)← Σdel.Setup()
3: Ktag,KS ← {0, 1}λ, PSK, SC,EDBcache ← empty map
4: return ((EDBadd,EDBdel,EDBcache), (Kadd,Kdel,Ktag,KS), (σadd, σdel,PSK, SC))

Search(KΣ, w, σ; EDB)

Client:
1: i← SC[w].
2: if i = ⊥
3: return ∅
4: Send sk0 = PSK[w] to the server.
5: PSK[w]← PPKE.KeyGen(1λ), SC[w]← i+ 1.
6: Send tkn← F (KS , w) to the server.

Client (C) & Server (S):
7: C and S run Σadd.Search(Kadd, w||i, σadd; EDBadd).

The server gets a list ((ct1, t
add
1 ), . . . , (ctn, t

add
n ) of ciphertexts and tags.

8: C and S run Σdel.Search(Kdel, w||i, σdel; EDBdel).
The server gets a list ((sk1, t

del
1 ), . . . , (skm, t

del
m )) of key elements.

9: S decrypts the ciphertexts with SK = (sk0, sk1, . . . , skm), and obtains the list NewInd =
((ind1, t1), . . . , (ind`, t`)).
Server:

10: OldInd← EDBcache[tkn]
11: Remove from OldInd the indices whose tags are in {tdelj }.
12: Res← OldInd ∪NewInd, EDBcache[tkn]← Res
13: return Res

Update(KΣ, add, w, ind, σ; EDB)

1: t← FKtag(w, ind)
2: sk0 ← PSK[w], i← SC[w]
3: if sk0 = ⊥ then
4: sk0 ← PPKE.KeyGen(1λ), PSK[w]← sk0

5: i← 0, SC[w]← i
6: end if
7: if op = add then
8: ct← PPKE.Encrypt(sk0, ind, t)
9: Run Σadd.Update(Kadd, add, w||i, (ct, t), σadd; EDBadd)

10: else . op = del
11: (sk′0, skt)← PPKE.IncPuncture(sk0, t)
12: Run Σdel.Update(Kdel, add, w||i, (skt, t), σdel; EDBdel)
13: PSK[w]← sk′0
14: end if

Game G2. This game replaces real calls to Σadd and Σdel by calls to the simulators. Yet, to do so,
the game needs to keep track of all the updates as they come: it can no longer rely on the server to
store them. So G2 makes some bookkeeping during the updates, and postpones all encryptions and
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Algorithm 5.13 Game G2.
Setup()

1: EDBadd ← Sadd.Setup()
2: EDBdel ← Sdel.Setup()
3: Tags, Tokens, Updates← empty map
4: u← 0, s← 0
5: SC,EDBcache ← empty map
6: return ((EDBadd,EDBdel,EDBcache),

(Tags, Tokens), (u, Updates, SC))

Update(KΣ, op, w, ind, σ; EDB)

1: Append (u, op, ind) to Updates[w]
2: Run Sop.Update(⊥)

Search(KΣ, w, σ; EDB)

Client:
1: i← SC[w].
2: if i = ⊥
3: return ∅
4: sk0 ← PPKE.KeyGen(1λ)
5: Ladd, Ldel initialized to empty lists.
6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj ]
8: if op = add then
9: ctj ← PPKE.Encrypt(sk0, indj , tj)

10: Append (uj , (ctj , tj)) to Ladd
11: else
12: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
13: Append (uj , (skj , tj)) to Ldel
14: end if
15: end for
16: Send sk0 to the server.
17: SC[w]← i+ 1.
18: Send tkn← Tokens[w] to the server.

Client & Server :
19: Run the simulator Sadd.Search(s, Ladd). The server gets a list ((ct1, t

add
1 ), . . . , (ctn, t

add
n ) of

ciphertexts and tags.
20: Run the simulator Sdel.Search(s, Ldel). The server gets a list ((sk1, t

del
1 ), . . . , (skm, t

del
m )) of key

elements.
21: S decrypts the ciphertexts with SK = (sk0, sk1, . . . , skm), and obtains the list NewInd =

((ind1, t1), . . . , (ind`, t`)).
Server:

22: OldInd← EDBcache[tkn]
23: Remove from OldInd the indices whose tags are in {tdelj }.
24: Res← OldInd ∪NewInd, EDBcache[tkn]← Res
25: return Res

key punctures to the subsequent Search query. We are able to do this only because both Σadd and
Σdel are forward-secure: the updates leak no information on their content.
G2 is precisely described in Algorithm 5.13. One very important thing is the way the lists Ladd
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and Ldel are created and used. Ladd contains the encryption of the result indices for the search query,
with their associated tag, and the insertion timestamp u. Similarly Ldel is the list of key elements,
associated tags and deletion timestamp. As such, Ladd (resp. Ldel) corresponds to the update history
on w for the scheme Σadd (resp. Σdel), and is used as such by the simulator Sadd (resp. Sdel).

From this, we can easily bound the distinguishing advantage between G1 and G2. There exist
two polynomial type adversaries Badd and Bdel against Σadd and Σdel respectively, making at most
N insertions, and two associated simulators Sadd and Sdel such that

P[G1(1λ) = 1]− P[G2(1λ) = 1] ≤ AdvSSE-sim
Σ,Sadd,LFP,Badd

(λ) + AdvSSE-sim
Σ,Sdel,LFP,Bdel

(λ).

Game G3. Game G3 replaces the indices of the deleted documents by 0 when encrypting with
the puncturable encryption scheme. Because we do this only for ciphertexts with punctured tags,
the IND-PUN-CPA security of PPKE tells us that G3 is indistinguishable from G4. There exist a
reduction B3 such that

P[G2(1λ) = 1]− P[G3(1λ) = 1] ≤ Advpun-cpa
PPKE,B3

(λ).

Algorithm 5.14 Game G3. Only Search is modi�ed from G2

Search(KΣ, w, σ; EDB)

Proceed as in G2 until line 5
6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj ]
8: if op = add then
9: if ∃u′ s.t. (u′, del, indj) ∈ Updates[w] then . This entry has been deleted.

10: ctj ← PPKE.Encrypt(sk0, 0, tj)
11: else
12: ctj ← PPKE.Encrypt(sk0, indj , tj)
13: end if
14: Append (uj , (ctj , tj)) to Ladd
15: else
16: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
17: Append (uj , (skj , tj)) to Ldel
18: end if
19: end for

Proceed as in G2 from line 16

GameG4. GameG4 (cf. Algorithm 5.15) explicitly uses the Updates table to compute the leakage
information TimeDB and DelHist. Then, it uses this information to construct the lists Ladd and Ldel

that will be passed to the simulator. Also, note that the tags, previous generated and stored from
the document-keyword pair, are now generated on the �y, and not stored anymore. We can do that
because we supposed that every document index was added a most once and deleted at most once.
Tags cannot repeat and do not have to be stored to ensure consistency.
G4 is pure rewriting of G3, and

P[G3(1λ) = 1]− P[G4(1λ) = 1] = 0.
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Algorithm 5.15 Game G4. Only Search is modi�ed from G3

Search(KΣ, w, σ; EDB)

Proceed as in G3 until line 0
6: TimeDB, DelHist initialized to empty lists.
7: for all (uj , add, indj) ∈ Updates[w] do
8: if ∃u′ s.t. (u′, del, indj) ∈ Updates[w] then . This entry has been deleted.
9: Append (uj , u

′) to DelHist

10: else
11: Append (uj , indj) to TimeDB

12: end if
13: end for
14: for all (uaddj , udelj ) ∈ DelHist sorted by increasing udelj do
15: tj ← {0, 1}λ
16: ctj ← PPKE.Encrypt(sk0, 0, tj)
17: Append (uaddj , (ctj , tj)) to Ladd
18: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
19: Append (udelj , (skj , tj)) to Ldel
20: end for
21: for all (uj , indj) ∈ TimeDB do
22: tj ← {0, 1}λ
23: ctj ← PPKE.Encrypt(sk0, indj , tj)
24: Append (uj , (ctj , tj)) to Ladd
25: end for

Proceed as in G3 from line 19

Simulator. The last thing remaining to build a simulator for Janus from G4 is to replace the
explicit use of w to generate the token tkn. This can trivially be done using the search pattern sp(w):
we replace w by min sp(w). Also, S directly uses the leakage TimeDB(w) and DelHist(w) given as
input of Search to generate Ladd and Ldel, and thus no longer needs to keep track of the updates, as
in G4 (the leakage function LwBS does that for him). Finally,

P[G4(1λ) = 1]− P[SSEIdealAJanus,S,LwBS (λ) = 1] = 0.

Conclusion. By combining all the contributions from all the games, there exists 4 adversaries B1,
Badd, Bdel, and B3 such that

AdvSSE-sim
Janus,S,L,A(λ) ≤ 2Advprf

F,B1
(λ) + AdvSSE-sim

Σ,Sadd,LFP,Badd
(λ)

+ AdvSSE-sim
Σ,Sdel,LFP,Bdel

(λ) + Advpun-cpa
PPKE,B3

(λ).

E�ciency. The computational and communication complexity of Janus can easily be derived from
Σadd and Σdel. In particular, it has the same complexity for insertion (resp. deletion) updates as Σadd

(resp. Σdel). To analyze search queries, let Tadd(n) and Tdel(n) be the computational complexities of
the search protocols of Σadd and Σdel, respectively, where n is the size of a result set. Then, Janus’
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search complexity for a keyword w with aw insertions, dw deletions, and nw = aw−dw non-deleted
matching results, is Tadd(aw) + Tdel(dw) +O(nw · dw ) . The last term comes from the fact that a
decryption of the PE scheme has complexity linear in the number of punctures. When instantiated
with Diana or Σoφoς , Janus thus has search complexity O(aw + dw + nw · dw ) = O(nw · dw ) .

In terms of communication for search queries, Janus also inherits from the complexity of Σadd,
and Σdel. Let Cadd(n) and Cdel(n) be the communication complexities of search protocols of Σadd

and Σdel, respectively, for a keyword that was inserted n times. Then, the communication complexity
CJanus(aw, dw) for a keyword that was inserted aw times and deleted dw times isCadd(aw)+Cdel(dw).
Also, the number of round-trips is the maximum number of round-trips between Σadd and Σdel.
Hence, when instantiated either with Σoφoς or Diana, Janus has single round-trip search and
updates protocols. In the case of Σoφoς , the search communication complexity is optimal (constant),
and for Diana, it is O(log(aw ) + log(dw)).

5.4.4 Reducing the Storage Overhead

In practice, the storage overhead of Janus is quite high: the client needs to store 3 group elements
(at least 256 bits each) for every keyword, while each ciphertext on the server side consists of
the masked index, two group elements and the tag, and 3 group elements and a tag for each key
share. To reduce the overhead at the client, we use a trick similar to the one used in Σoφoς : we
pseudo-randomly generate the encryption scheme’s parameters and key elements ski from a master
key and the number of punctures done on the secret key. The client does not need to store the public
key as he can directly encrypt the plaintext indices from the scheme’s parameters (and this will
actually be faster). As a result, the client has to store only the number of deleted entries for each w,
which he does already if Σdel is instantiated with Diana. This modi�cation is described in detail in
Algorithm 5.16.

A similar trick can be used to reduce the storage on the server side. Indeed, one of the three
group elements stored for each entry is a random blinding element, which can be generated pseudo-
randomly using a PRF applied on the keyword/document pair (w, ind) to be encrypted. As the
blinding element is part of the ciphertext, and as it is now a (deterministic) function of the pair
(w, ind), the tag is now redundant and can be omitted. This modi�cation is also described in
Algorithm 5.16.

Note that this optimization removes the plausible deniability property of Janus: because all the
key elements are pseudo-randomly generated, they can be easily reconstructed from the puncturable
encryption scheme’s parameters, which now have to be stored by the client (which was not the case
with the non-optimized version).

5.4.5 Security of Janus Against Weaker Adversaries

We showed that Janus protects against persistent adversaries (e.g. a malicious server) and guarantees
both forward and backward privacy. In this section, we analyze its resistance against weaker
adversaries. First, we consider a snapshot adversary who is able to see the encrypted database at one
(or more) instant – e.g. in case of a disk theft or subpoena. Then, we consider the security of Janus
against a late-persistent adversary that obtains control over the server sometime after the client has
outsourced his data and, possibly executed some queries — e.g. in case of malware.

Janus, as is, does not protect against a snapshot adversary since the cached results are kept in
plaintext on the server side. Beside trivially revealing the cached content, this can also lead to the
recovery of some of the queries. This, in turn, can be used for leakage-abuse attacks in the manner
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Algorithm 5.16 Our adaptation of Green-Miers’ scheme for pseudo-random generation of parame-
ters and randomness from a master secret keyKGM

w . We suppose that the group G and the functions
H and H ′ are picked externally. Fp : {0, 1}∗ → Zp is a PRF.
ParamGen(KGM

w )

1: α← Fp(K
GM
w , alpha), β ← Fp(K

GM
w , beta), γ ← Fp(K

GM
w , gamma), r ← Fp(K

GM
w , r0||0).

2: g1 ← gα, g2 ← gβ .
3: return (α, β, γ, r, g1, g2).

Encrypt(KGM
w ,M, t) (M ∈ {0, 1}m, t 6= t0)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w ).

2: s
$← F (KGM

w , s||w||ind)
3: f ← gs, h← H(t)
4: return

(
ct(1) = M ⊕H ′

(
e(g1, f

β)
)
, ct(2) = f, ct(3) = fβ+h·γ)

IncPuncture(KGM
w , i, t)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w ).

2: h← H(t)
3: r1 ← Fp(K

GM
w , r1||i)

4: `i ← Fp(K
GM
w , l||i), `i−1 ← Fp(K

GM
w , l||(i− 1))

5: f ← gr1

6: return
(
gβ·(`i−`i−1+r1), fβ+h·γ , f, t

)
SK0Gen(KGM

w , i)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w ).

2: h0 ← H(t0)
3: if i = 0 then
4: f ← gr

5: return
(
gβ·(r+α), fβ+h0·γ , f

)
6: else
7: r0 ← Fp(K

GM
w , r0||i)

8: `i ← Fp(K
GM
w , l||i)

9: f ← gr0

10: return
(
gβ·(r0−`i), fβ+h0·γ , f

)
11: end if

of �le injections attacks [ZKP16] adapted to using a single (or multiple) snapshot of EDB (and in
particular of EDBcache).

To �x this problem, we propose to encrypt EDBcache using a key that is not permanently stored at
the server: the content of EDBcache relevant to w is encrypted using a keyword-speci�c symmetric
key Kw. To this end, we modify line 6 of Algorithm 5.12 to tkn||Kw ← F (KS , w) where the client
also sendsKw to the server. Then the server usesKw to decrypt and re-encrypt EDBcache as needed,
using an IND-CPA-secure secret-key encryption scheme EKw . Once the Search query is processed,
the server discards Kw; in particular it must not be stored in EDB.

Unfortunately, encryption alone is not su�cient as the implementation of EDBcache could leak
additional information, such as the time of insertion/modi�cation of data, or the size of previous,
now discarded, values. To this end, we rely on history-independent (HI) data structures [NT01]
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whose goal is to hide exactly this kind of side-channel information. Note that if Σadd and Σdel are
instantiated with existing forward-secure schemes (SPS [SPS14], Σoφoς , or Diana — cf. Chapter 4),
history-independence is not an issue as the snapshot adversary learns at most the update leakage,
reduced to the list (opi) with opi = add if the i-th update was an insertion, and opi = del otherwise.
Though HI data structures come with an additional overhead, the state-of-the-art constructions are
practical [BS13].

The security of the above approach relies on cooperation from the server who is required to
use encryption and HI structures for EDBcache and erase Kw from memory once he �nishes en/de-
crypting EDBcache. Note that snapshot attacks are essentially attacks against the server, more so
than against the client: we are protecting from the attacker information learned by the server.

Despite the assumptions we have just outlined, it is clear that storing the cache in encrypted
form is a vast improvement over storing this information in cleartext. It is also a cheap solution:
symmetric encryption is extremely fast on modern processors, especially in the presence of special-
ized instructions such as AES-NI. Encrypting EDBcache would not signi�cantly impact performance,
relative to the decryption of punctured encryption schemes, or running the two SSE schemes Σadd

and Σdel.
Let us now consider Janus against late-persistent adversaries. In this case, we strive to obtain

the following backward privacy: even if a deleted entry matched a search query processed before
the corruption, it should be infeasible for the adversary to recover the associated document index.
Symmetrically encrypting EDBcache, as in the case of the snapshot adversary, is no longer su�cient
as the encryption key Kw will eventually be revealed. Instead, we require that the server encrypts
results with the PE scheme, using the public key for the newly generated secret key (line 5 in
Algorithm 5.12).

5.4.6 Performance of Janus

As Janus is a composition of any forward secure scheme and the adapted Green-Miers puncturable
encryption scheme, here we focus on the performance of this scheme once tweaked to reduce the
storage overhead.

For the bilinear maps, we used a Type-3 pairing (cf. [GPS06]) on Barreto-Naehrig curves [BN06].
We modi�ed Miers’ implementation of the Green-Miers PE scheme of libforwardsec [Mie15],
which is itself based on the RELIC pairing library [AG], to �t our usage. The machine used for the
experiments is the same as the one of Section 4.7.2: an Intel Core i7 4790K 4.00 GHz CPU (with 8
logical cores) with 16 GB of RAM. Note though that the experiments here where run using a single
core.

Table 5.2 – Performance of the puncturable encryption scheme used in Janus. Means are taken
over 400 iterations.

Encrypt IncPuncture SK0Gen Decrypt (d punctures)

1.699 ms 1.386 ms 1.396 ms (d+ 1)× 2.345 ms

We end up having 74-byte ciphertexts (for 8-byte indices), and 200 byte key shares. The computa-
tional performance of the scheme is given in Table 5.2. SK0Gen is the procedure used to generate
the �rst key share sk0 of the punctured secret key from the number of punctures. Note that these
are single-core timings. While encryption, puncture and �rst key share generation are fast enough
to yield a reasonably practical scheme, decryption does not scale well as the number of punctures
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grows. In particular, Janus would not support more than a few hundreds deletions per keyword in
practice, for both computational and storage overhead reasons.

Designing puncturable encryption with smaller keys or better computational e�ciency is an open
problem, and Janus would immediately bene�t from any improvement in this area.
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Love all, trust a few, do wrong to none.

All’s Well That Ends Well – William
Shakespeare



Veri�able Searchable
Encryption 6

A
ll the schemes studied in the previous chapters, are secure in the sense of con�den-
tiality, when the server is honest-but-curious. On the opposite, malicious servers could
easily modify the results of a query, e.g. for censorship purposes, and could even use the

fact that the execution of the protocols is not veri�ed to also break the con�dentiality of the SSE
construction.

In this chapter, we will study and design e�cient SSE schemes provably secure against malicious
servers. We will start by giving lower bounds on the complexity of such veri�able SSE schemes.
Then, we will construct generic solutions matching these bounds using e�cient veri�able data
structures. We will quickly see how to adapt Σoφoς , Diana and Janus in order to turn them into
veri�able schemes. Finally, we will modify the SPS forward private scheme [SPS14] to make it
provably secure against active adversaries, without increasing the computational complexity of the
original scheme.

These contributions, authored with Fouque and Pointcheval, appeared in [BFP16].
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6.1 A Lower Bound on Veri�able Searchable Encryption

Before giving some constructions of veri�able SSE, we want to show that protection against active
adversaries has an inherent cost, and to lower bound this cost. For semi-honest adversaries, lower
bounds are trivial: search cannot be done in less than Ω(m) where m is the number of results for a
query, and update has to run in Ω(1) per modi�ed document/keyword pair.

For malicious adversaries, the result is not as straightforward. Fortunately, we can rely on the
literature on authenticated data structures (namely authenticated hash tables) [TT05; PT08; PTT09]
and memory checking [BEG+91; NR05; DNRV09] to have a better insight into this question. Actually,
in this section, we show how to reduce memory checking to veri�able SSE, and, using the lower
bound result of [DNRV09], give a general computational lower bound on the Search and Update
algorithms of any SSE scheme secure against malicious adversaries. Then, based on [TT05], we
argue that, if we only use symmetric primitives for veri�cation, we cannot actually hope for less
than Ω(nw + logK) for Search and Ω(logK) for Update.

6.1.1 Memory Checking

Memory checking is the problem of outsourcing memory to an untrusted party while ensuring
authenticity and using limited trusted local storage. A memory checker C is a probabilistic algorithm
that receives from the user read and write queries, and, by making its own requests to the untrusted
remote memory, and accessing a small private memory, ensures that the original queries were either
answered correctly, or that a fault was reported.

The formal de�nition of a memory checker can be found in [DNRV09]. In particular, the authors
de�ne C as a (Σ, n, q, s)-checker as a checker that can be used to store a database of n values with
query complexity q (the average number of remote memory accesses necessary for each memory
query processed by the memory checker) and local memory complexity s, where the secret and
public memory are over the alphabet Σ.

The authors of this work prove a lower bound on q, assuming that the private memory is not
‘large’: s is O(nα), with 0 ≤ α < 1. The actual theorem is given as follows:

Theorem 6.1 (Theorem 3.1 of [DNRV09]). Let C be a (Σ, n, q, s) memory checker with s ≤ n1−ε for
some ε > 0 and |Σ| ≤ npoly(logn). It must be that q = Ω( logn

log logn).

6.1.2 A General Lower Bound on Veri�able SSE

The problem of veri�able SSE (VSSE) is somewhat similar to the one of memory checking: SSE
stores document indices as values, and keywords replace memory checkers’ addresses. However,
we can identify two important caveats:

• SSE schemes must be able to store a variable number of indices (i.e. keywords);

• in SSE, each keyword can match zero, one, or more documents, instead of having one memory
address associated to exactly one value in the case of memory checkers;

• contrary to memory checkers, usual SSE schemes do not have an interface to replace a
value/document by another one. It can only remove or add a keyword/document pair.

However, we can port the lower bound for memory checkers to VSSE, as stated in Theorem 6.2.
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Theorem 6.2 (Computational lower bound on veri�able SSE). Let Σ be a VSSE scheme with client
memory of size s ≤ K1−ε for some ε > 0. Then, either Search queries have computational complexity
Ω(max( logK

log logK ,m)) or Update queries have computational complexity Ω( logK
log logK ).

The proof will work by writing a reduction from memory checkers to veri�able SSE, and conclude
using the lower bounds on memory checkers from Theorem 6.1 will also transfer to VSSE.

Proof. Search queries cannot be computed in less thanO(m) operations, trivially. So in the following,
we will just show that they cannot either be executed in less than O( logK

log logK ).
Let us �rst consider the memory checker C built over an SSE scheme Σ as follows. In order to

read index i, C calls Σ.Search(i) and returns the result. To write value v at index i, C �rst calls
Σ.Search(i), gets a single value v′, runs Σ.Update(del, i, v′) and then Σ.Update(add, i, v). In this
execution, Σ stores exactly one value (document) per index (keyword), so the Search calls will only
return a single entry.

One must notice that C’s untrusted external memory is the memory used by the SSE server, and
the external memory accesses C makes are the ones made by the server side of the SSE. Similarly,
C’s trusted local memory is the one used by the SSE client, and so, the size s of private memory C
uses is s, the size of private memory of Σ, which we set to be less than K1−ε for ε > 0. Figure 6.1
gives a simple graphic representation of the reduction and its limits.

Σ Client Σ Server

Local
Storage

External
Storage

Update

SearchC

Figure 6.1 – Representation of the reduction from memory checkers to veri�able SSE. Everything
in the enclosing box is comprised in C.

If both the client and server-side parts of Search and Update had an (amortized) query complexity
o( logK

log logK ), the query complexity of C would be o( logK
log logK ), and thus C would break the lower bound

of Theorem 6.1. Also, without loss of generality, we can suppose that Σ uses all the data retrieved
from the external memory. Hence, one of Search or Update has complexity at least Ω( logK

log logK ).

We emphasize that this result bounds the minimal complexity of the costliest operation between
Search and Update and does not imply that both operations complexity is lower bounded by
Ω( logK

log logK ). Also, our result does not provide a lower bound on the communication complexity: we
will actually show in Section 6.3 that we can achieve SSE veri�cation with constant communication
overhead.

6.1.3 Lower Bound for Practical Constructions

Theorem 6.2 gives us a general bound for generic searchable encryption. However, in this chapter, we
focus more on symmetric searchable encryption schemes that (mostly) use symmetric primitives like
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hash functions or block ciphers. More exactly, all the existing schemes use deterministic encryption
to perform the search and update protocols (deterministically too), and we might want to use similar
techniques for veri�cation.

One technique we can rely on makes use of cryptographic hash functions for veri�cation. The
optimality of such constructions has been studied by Tamassia and Triandopoulos [TT05], who
showed that one cannot do better than having Ω

(
log n

k

)
veri�cation and update computational

complexity to authenticate a dictionary with n entries through hashing using memory Θ(k) [TT05,
Theorem 6]. They also show, that in this case, the communication overhead is also Ω

(
log n

k

)
. Using

the same reduction as in Theorem 6.2, we can show that if we rely on hashing for veri�cation
purpose in SSE, both Search and Update protocols cannot be run in time less than Ω(log K

|σ|) time
for a client side storage of size Θ(|σ|). Taking into account the search operation’s lower bound for
general SSE, we actually have that the minimal search complexity is Ω(max(m, log K

|σ|)).

Theorem 6.3. Let Σ be a VSSE scheme with client memory of size s, using hash functions for veri-
�cation. Then, either Search queries have computational complexity Ω(max(log K

|σ| ,m)) or Update

queries have computational complexity Ω(log K
|σ|).

Another well-known technique in authenticated data structures is cryptographic accumulators.
In particular, it has been used in several contributions for veri�able hash tables [CL02; STY01].
The most e�cient construction [PTT09] performs constant (expected) query time (for both proof
generation and veri�cation). However, the expected update time on the server side is O(nε) for a
�xed 0 < ε < 1 (it is constant on the client side), and we cannot reach the general lower bound of
Section 6.1.2 using cryptographic accumulators. For practical considerations, we must also consider
the fact that the cryptographic operations needed for accumulators (exponentiation of large integers
or bilinear maps) are a lot more computationally expensive than hashing, and despite a better
asymptotical complexity, they might not compare favorably with hashing-based techniques.

6.2 Tools for Constructing Veri�able Dynamic SSE schemes

When verifying the results of a search query, one has to check two points: �rst that every result
matches the query, and then that every matching result has been returned. This crucial fact was
already emphasized in [SPS14].

If the �rst point is relatively easy to ensure for static databases, things become more complicated
when considering dynamic databases, especially databases supporting deletions. We must indeed
prevent replay attacks, where the server returns a result that used to belong to the database but
that no longer does (the document-keyword pair was deleted). If using MACs over the document-
keyword pairs would have been enough for static SSE or even insertion-only SSE, this is no longer
secure on its own for the completely dynamic case, when the SSE supports both insertions and
deletions. Somehow, the client has to store some kind of digest of the outsourced database. For
e�ciency, we want this digest to be much smaller than the database.

The second point, is no less important, e.g. when a search query has no matching result. In this
case, how can we prove that there are actually no matches to the query? Similarly, we must prevent
the server to return an empty list of results when there are actual matches. This last remark was
not taken into account in [SPS14], and the modi�cation the authors present to make their scheme
secure against malicious adversaries does not prevent this attack.
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6.2.1 Veri�able Hash Tables

A central component of our veri�able SSE construction is veri�able hash tables. It implements the
functionality of a regular (static) hash table, but also provides a proof that, when querying a key in
the hash table, the returned element is the right one, and that there are no associated element when
querying a key that is not present in the hash table.

More formally, a veri�able hash table is a tuple of algorithms Θ = (VHTSetup, VHTGet,
VHTVerify, VHTUpdate, VHTRefresh) :

• VHTSetup(T ) takes as input a hash table T and outputs (KVHT,VHT, σVHT) where KVHT

is a private key, VHT is the veri�able hash table data structure (possibly including a public
key), and σVHT the client’s state.

• VHTUpdate(T,VHT, u) takes as input a hash table T together with its veri�able data struc-
ture VHT, and updates all of these according to the update operation u coming from a
prede�ned update set (e.g. replacement of a value in the table, deletion of a key, . . . ). It outputs
the new veri�able hash table VHT′ and an update proof π. Its complexity for a table of size n
is denoted T prove

up (n).

• VHTRefresh(KVHT, σVHT, π, u) refreshes the digest σVHT (i.e. the client’s state) according to
the update u, using the proof π generated by a previous VHTUpdate call. Its complexity for a
table of size n is denoted T check

up (n).

• VHTGet(T,VHT, hkey) outputs the tuple (v, π) where v is the value associated to hkey in T ,
and π a proof. For a table of size n, its complexity is denoted T prove

∈ (n) when v 6= ⊥ (hkey
matches a value), and T prove

⊥ (n) when v = ⊥.

• VHTVerify(KVHT, σVHT, hkey, v, π) returns either ACCEPT or REJECT. For a table of size
n, its complexity is denoted T check

∈ (n) when v 6= ⊥, and T check
⊥ (n) when v = ⊥.

A veri�able hash table must have two properties: correctness (VHTGet should return the value
associated to hkey in T together with a valid proof) and soundness (it is hard for the server, without
σVHT, to forge a valid proof, even if he saw a polynomial number of valid proofs, and tried to
corrupt the client’s state). These properties are formalized by games VHTCorr and VHTSound, as
described in Figure 6.2.

The VHTCorr is relatively straightforward: it simulates a regular execution of a veri�able hash
table (the adversary does not try to cheat by providing adversarial input to the VHT functions). The
VHTSound is a bit more involved as it allows for the following behavior: not only the adversary
can try to forge a valid proof for an invalid answer (in the Challenge procedure), but he can also try
to tamper the client’s state by giving him wrong refresh information (in the Update procedure).

De�nition 6.1 (VHT Correctness). Let Θ be a VHT scheme. For an adversary A, the advantage
AdvVHT-corr

Σ,A (λ) of A in the correctness game is de�ned as

AdvVHT-corr
Θ,A (λ) = P[VHTCorrAΘ(λ) = 1].

An VHT scheme Θ is correct if for any polynomial-time adversary A, AdvVHT-corr
Θ,A (λ) is negligible in

λ.
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VHTCorrΘ

Init(T )

(KVHT,VHT, σVHT)← VHTSetup(T )
return (VHT, σVHT)

Update(u)

(VHT′, π)← VHTUpdate(T,VHT, u)
σ′VHT ← VHTRefresh(KVHT, σVHT, π, u)
if σ′VHT 6= REJECT then
T ← Apply(T, u)
VHT← VHT′, σVHT ← σ′VHT

end if
return (T,VHT, σVHT)

Challenge(hkey)

(v, π)← VHTGet(T,VHT, hkey)
if VHTVerify(KVHT, σVHT, hkey, v, π)

= REJECT or T [hkey] 6= v then
win← true

end if
return (v, π)

Final()

return win

VHTSoundΘ

Init(T )

(KVHT,VHT, σVHT)← VHTSetup(T )
return (VHT, σVHT)

Query(hkey)

(v, π)← VHTGet(T,VHT, hkey)
return (v, π)

Update(u)

(VHT′, π)← VHTUpdate(T,VHT, u)
The game gives (VHT′, π) to the adversary
and gets back π̃
σ′VHT ← VHTRefresh(KVHT, σVHT, π̃, u)
if σ′VHT 6= REJECT then
T ← Apply(T, u)
VHT← VHT′, σVHT ← σ′VHT

end if
return (T,VHT, σVHT)

Challenge(hkey, v, π)

if VHTVerify(KVHT, σVHT, hkey, v, π)
= ACCEPT and T [hkey] 6= v then

win← true
end if

Final()

return win

Figure 6.2 – Correctness (VHTCorr – left) and soundness (VHTSound – right) games for veri�able
hash tables.

De�nition 6.2 (VHT Soundness). Let Θ be an SSE scheme. For an adversary A, the advantage
AdvVHT-snd

Θ,A (λ) of A in the soundness game is de�ned as

AdvVHT-snd
Θ,A (λ) = P[VHTSoundAΘ(λ) = 1].

An SSE scheme Θ is sound if for any polynomial-time adversary A, AdvVHT-snd
Θ,A (λ) is negligible in λ.

We emphasize that we do not directly need any form of con�dentiality on the table content
nor on the queries. We will actually start from a secure SSE scheme (in this case security means
con�dentiality) and turn it into a veri�able SSE scheme. The con�dentiality of our scheme will be
inherited from the con�dentiality of the original scheme. The veri�able hash table that will be put
on top of the SSE scheme will ensure soundness. Finally, we have to make sure that correctness of
the original scheme correctly transfers to the veri�able scheme.

Construction of veri�able hash table has been extensively studied in the literature, in particular
in the case of dynamic tables. For now, we suppose that we have access to an implementation of
veri�able hash tables.



6.2 Tools for Constructing Veri�able Dynamic SSE schemes 125

6.2.2 Static Veri�able Hash Tables

It will also be useful to have static veri�able hash tables. In this case, VHTUpdate and VHTRefresh
are not implemented, as well as the Update procedures from the security games de�ned above.
Once the hash table is set up, it cannot be modi�ed. These can easily be constructed from a message
authentication code.

The idea is to MAC the values with the associated key and the rank of the key in the table
(according the lexicographic order of the key). To prove that a key is correctly mapped to a returned
value, the server returns the MAC, which the client can easily verify. Because the MAC is secure,
the server cannot forge valid tag, and because only a single tag for each position is accessible to the
server, he cannot replay them. If the queried key is not present, the server just returns the keys,
values and tag of the elements just before and after the expected position of the queried key. He will
be able to �nd this position using binary search.

Algorithm 6.17 Instantiation of a static veri�able hash table
VHTSetup(T )

1: K ← K
2: Initialize a empty table VHT of size |T |
3: i← 0
4: for all (key, v) ∈ T in ascending lexico-

graphic order over key do
5: s← MACK(key, v, i)
6: VHT[key]← (v, i, s).
7: i++
8: end for
9: return (K,VHT)

VHTGet(T, x)

1: if T [x] 6= ⊥ then
2: (v, i, s)← VHT[x]
3: return (v, (i, s))
4: else
5: Using binary search, locate x in T :

Find i such that keyi < x < keyi+1

where (vi, i, si) = VHT[keyi]
and (vi+1, i+ 1, si+1) = VHT[keyi+1]

6: return (⊥, (i, keyi, vi, si,
keyi+1, vi+1, si+1))

7: end if

VHTVerify(K,x, v, π)

1: if v 6= ⊥ then
2: Parse π as (i, s)
3: if Vf(K, (x, v, i), s) = > then
4: return ACCEPT
5: else
6: return REJECT
7: end if
8: else
9: Parse π as

(i, key−, v−, s−, key+, v+, s+)
10: if Vf(K, (key+, v+, i+ 1), s+) = >

and Vf(K, (key−, v−, i), s−) = >
and key− < x < key+ then

11: return ACCEPT
12: else
13: return REJECT
14: end if
15: end if

The formal description of this construction is given in Algorithm 6.17. Veri�cation will always
happen in constant time: there are at most two MACs to verify and two comparisons. The proof
generation will have a logarithmic complexity (it will need dlog ne comparisons when the table
contains n elements) if the key is not present in the table, and constant complexity if it matches a
value.

The soundness of the static VHT described in the Algorithm 6.17 directly relies on the security of
the MAC, as stated by the following proposition.
Proposition 6.4. Let Θ be the static VHT of Algorithm 6.17, and A a polynomial-time adversary in
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the VHTSound game such that the veri�ed table has n entries and Challenge oracle is called q times.
Then, there is an adversary B such that

AdvVHT-snd
Θ,A (λ) = Adveuf-cma

MAC,B (λ)

where B makes n queries to the Query oracle, and at most 2 · q queries to the Challenge oracle of the
EUF-CMA game (cf. De�nition 2.8).

Proof. Consider the reduction from an adversary A on the VHT instantiation to the EUF-CMA
game adversary B: every time the instantiation needs to compute MACK , we replace the call by
the Query oracle of the Geuf-cma game. This only happens during the VHTSetup procedure. When
A produces a forgery (key, v, π), we will forward it to the Geuf-cma game and produce a forgery for
MAC.

If this forgery is such that v 6= ⊥, π can be parsed as (i, s) and hence, ((key, v, i), s) is forwarded
to Geuf-cma. If A wins the soundness game with this forgery, it implies that

(v, π) 6= VHTGet(T,VHT, key),

hence that ((key, v, i), s) is not in the transcript of Geuf-cma (Geuf-cma’s Query oracle is called only
during the setup phase). It also implies that VHTVerify accepts, i.e. that the MAC veri�cation
succeeded, and that the forwarded forgery was a valid unseen forgery.

If the forgery is such that v = ⊥, π can be parsed as (i, key−, v−, s−, key+, v+, s+). We know
that π 6= (ireal, keyreal− , vreal− , sreal− , keyreal+ , vreal+ , sreal+ ) where the real values are the one generated
by VHTGet(T,VHT, key). We also know that key− < key < key+, because VHTVerify would not
accept otherwise. Let us separate two cases:

• i 6= ireal: as VHTVerify accepts, (key−, v−, i, s−) and (key+, v+, i+ 1, s+) cannot be both
entries of VHT. If that were the case, it would mean that the condition key− < key < key+

is not veri�ed, and the proof π not valid, because, by construction, we know that keyreal− and
keyreal+ is the only pair of consecutive keys verifying this condition, and it would contradicts
i 6= ireal. Hence, if (key−, v−, i, s−) is not an entry of VHT, then ((key−, v−, i), s−) does
not appear in the transcript of the CMA game and is a valid MAC forgery. The same applies
if (key+, v+, i+ 1, s+) is not an entry of VHT.

• i = ireal, suppose without loss of generality, that there is a di�erence on the − components
of the proof. Then (key−, v−, i, s−) is a valid unseen (because never computed in VHTSetup)
MAC forgery.

From the previous arguments, we directly have

AdvVHT-snd
Θ,A (λ) = Adveuf-cma

MAC,B (λ)

6.2.3 Incremental Hashing

We recall from Section 2.3.5, that a set hashing function is a hash functionH taking as input sets,
with the additional feature thatH is incremental: it is easy to compute the hash of S ∪ {x} or of
S \{x} from the hashes of S from x (when x /∈ S). This will be very helpful to e�ciently update the
SSE veri�cation data structure as the server and/or the client will be able to update the �ngerprint
of the set of documents matching a keyword very easily, without having to retrieve the entire set
and re-hash it.
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6.3 A Generic and Optimal Construction

In this section, we describe a solution for veri�able symmetric searchable encryption that matches
the lower bound of Section 6.1. The construction described later in the section must be seen as a
generic solution to the veri�cation problem with SSE: we make use of an SSE instantiation Σ as a
black-box and do not rely on its construction. In other words, the data structures built in this section
can be used on top (or more exactly besides) of any SSE scheme and turn it in a VSSE scheme with
similar con�dentiality guarantees and additive logarithmic overhead.

The general principle of this construction is to have a veri�able hash table, whose keys are the
database’s keywords, and which stores digests of an index set. More precisely, we will have a hash
table T such that for any w ∈W , T [w] = H(DB(w)),H being a hash function de�ned over sets of
strings. The main issue here is to make updates fast: we don’t want to re-hash the full set DB(w)
when updating the database for keyword w. The hash function H must have a certain level of
homomorphism: we need a set hashing function.

Let Σ be a dynamic SSE scheme, Θ a veri�able hash table instantiation, and H a set hashing
function. We de�ne GVSSEΣ,Θ,H (for Generic SSE Veri�cation) as in Algorithm 6.18.

Correctness. The correctness of GVSSE is straightforward given the correctness of Σ and com-
pleteness of Θ. Using a hybrid proof, we can very easily prove the following proposition.
Proposition 6.5. If Σ is a dynamic SSE scheme, Θ a veri�able hash table instantiation, andH a set
hashing function, then for every adversary A, there exists adversaries B and B′ such that

AdvSSE-corr
GVSSEΣ,Θ,H,A

(λ) ≤ AdvSSE-corr
Σ,B (λ) + AdvVHT-corr

Θ,B′ (λ)

Soundness. As expected, the soundness of the GVSSE scheme directly relies on the soundness of
Θ and the collision resistance ofH. More formally, we have the following proposition.
Proposition 6.6. If Σ is a dynamic SSE scheme, Θ a veri�able hash table instantiation, andH a set
hashing function, then for every adversary A, there exists adversaries B, C , and D such that

AdvSSE-snd
GVSSEΣ,Θ,H,A

(λ) ≤ AdvSSE-corr
Σ,B (λ) + Advcol

H,C(λ) + AdvVHT-snd
Θ,D (λ)

The idea behind the proof is to use hybrids, in which we successively replace the (sometimes
incorrect) SSE scheme by direct calls to the database, the calls to the veri�able hash table by direct
call to T and the set hashing function by a one-to-one representation of the sets.

Con�dentiality. Con�dentiality of the composite scheme that is GVSSE is a little trickier: the
information stored in the veri�able hash table, or the keys, give some information to the server
even if these were previously hidden by the underlying SSE scheme Σ. For example, the server will
immediately learn the number of distinct keywords in the database from the size of the table. Also,
he will learn from the search and update queries the repetition of searched/updated keywords (cf.
the query pattern in Section 3.2).
Proposition 6.7. Let Σ be a LΣ-adaptively-secure dynamic SSE scheme, Θ a veri�able hash table
instantiation, andH a set hashing function. Let LGVSSE(DB) be de�ned as:

LStp
GVSSE(DB) = (LStp

Σ (DB),K),

LSrch
GVSSE(w) = (LSrch

Σ (w), qp(w)),

LUpdt
GVSSE(op, in) = (LUpdt

Σ (op, in), op, qp(w)).
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Algorithm 6.18 The GVSSE construction
Setup(DB)

1: (KΣ,EDBΣ)← Σ.Setup(DB)
2: Initialize T to an empty hash table
3: KT ,KS

$← {0, 1}λ
4: for all w ∈W do
5: wtag← F (KT , w)
6: Ke ← F (KS , w)

7: T [wtag]← H(FKe(DB(w)))
. Apply FKe to all the elements of DB(w),

and hash the resulting set
8: end for
9: (VHT, σVHT)← VHTSetup(T )

10: return ((EDBΣ, T,VHT),
(KΣ,KT ,KS), σVHT)

Search(KΣ, σ, w; EDB)

1: Run Σ.Search(KΣ, w; EDBΣ).
The client gets the result set V

2: Client:
3: wtag← F (KT , w), Ke ← F (KS , w)
4: ComputeH(FKe(V ))
5: Send wtag to the server

6: Server :
7: (h, π)← VHTGet(T,VHT,wtag)
8: Send (h, π) to the client

9: Client:
10: VHTVerify(σVHT,wtag, h, π)
11: if not h ≡H H(FKe(V ))
12: return REJECT
13: return V

Update(KΣ, σ, op, in; EDB)

1: Run Σ.Update(KΣ, op, in; EDB)
2: For all modi�ed pairs (w, ind) run the fol-

lowing
3: Client:
4: wtag ← F (KT , w), Ke ← F (KS , w),
h′ ← H(FKe({ind}))

5: Send (wtag, h′, op) to the server

6: Server :
7: h← T [wtag]
8: if op = add or edit+, h̃← h+H h

′

9: if op = del or edit−, h̃← h−H h′
10: Let u be the replacement of h by h̃ in

T [wtag]
11: (VHT, π)← VHTUpdate(T,VHT, u)
12: Send (π, h, h̃) to the client

13: Client:
14: σVHT ← VHTRefresh(σVHT, u)
15: return σVHT

Then for every adversary A, there exist two adversaries B, and C , and simulators S and SΣ such that

AdvSSE-sim
GVSSEΣ,Θ,F,H,S,LGVSSE,A(λ) ≤ AdvSSE-sim

Σ,SΣ,LΣ,B
(λ) + Advprf

F,C(λ)

where B makes the same queries to Σ as the ones A makes to GVSSE, and where C makes at mostK
queries to F .

The con�dentiality of the Σ is considered under the de�nition of Section 3.1.3.3, i.e. against an
active adversary, which is formally di�erent from the previous con�dentiality de�nitions which
considered only passive adversaries. However, we can see that, when Σ has single round Search
and Update protocols, these are equivalent (the adversary cannot mess with the �rst and single
message the client sends).

It is also crucial to see that GVSSE cannot be forward private, independently of the chosen SSE
scheme: the update part of the leakage function always return the query pattern.
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Computational complexity. To evaluate the computational complexity of the construction, we
will use the dynamic SSE construction Πdyn

bas of Cash et al. [CJJ+14] which has search complexity
linear in the number of results and constant update time.

The computational complexity of Search and Update queries in GVSSE is given in Table 6.1 for
two possible VHT instantiations, hash-based [TT05] or cryptographic accumulators-based [PTT09].
In the �rst case, we achieve logarithmic complexity in both accessing and updating (including
the veri�cation), and reach the lower bound of Section 6.1.3. The second case achieves optimal
search time (for both the client and the server), linear in the number of results, as both access and
veri�cation of the VHT is done in constant time, but needsO(Kε ) update time, where 0 < ε < 1 is
a �xed constant (for the server only, the client having constant update time). The we could also use
the VHT instantiation of [PTT09] which reverses the complexity for searches and update, and end
up with an optimal update complexity.

Table 6.1 – Computational complexity of GVSSE with Πdyn
bas as SSE scheme, in function of the

VHT instantiation used. The update complexities are given for a single modi�ed
keyword/document pair. Remind that K is the number of distinct keywords, 0 < ε < 1
is a �xed constant.

VHT Instantiation Search Update

Server Client Server Client

Hash Tree [TT05] O(nw + logK ) O(nw + logK ) O(logK ) O(logK )

Accumulators Pairing O(nw + 1/ε) O(nw + 1/ε) O(Kε ) O(1/ε)
[PTT09] RSA O(nw +Kε ) O(nw + 1/ε) O(1/ε) O(1/ε)

Hence, depending on VHT implementations, the GVSSE construction achieves optimality in two
senses: �rst in a general way, showing that the lower bound of Section 6.1 is tight, then for the
Search query only, and �nally for the Update query only, showing that we can have a VSSE scheme
with no asymptotic veri�cation overhead for either search or update queries. We emphasize that
the accumulator-based instantiation might be interesting in practice for very large databases with a
few updates.

We built a proof of concept to evaluate the performance of GVSSE, using a hash-tree-based
VHT, and ECMH [MTA16] for the set hash function. The veri�cation takes about 3 ms for a query
matching 1000 results, and 708 ms for 200 000 results, on a database with 4.6× 106 distinct keywords.
The set hashing function hashes an element in less than 3.6 µs. Our experiments were using a single
thread and were running on a Xeon at 2.66 GHz.

6.4 Verifying Σoφoς , Diana, and Janus

In Chapters 4 and 5, we showed the security of Σoφoς , Diana and Janus, but only against passive
adversaries. However, all these schemes can easily be turned into veri�able SSE schemes.

We can do so by storing a hash of DB(w) for every w on the client, and during a search, the
stored hash value is checked to match the hash recomputed from the server’s results. Again, this
hash will be computed with a set hashing function to allow for easy incremental updates.

Because the hashes are locally stored, only the client will be impacted by this modi�cation, both
on the computational complexity, and on storage complexity of the schemes. Yet, as we purposely
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used an incremental hash function, the update complexity will not be impacted, neither will be the
search complexity, as it is always (at least) linear in the number of updates. The client will have to
store additional O(λ) bits per keyword (the hash value).

As for the original schemes, we could outsource this storage using ORAM. Yet, while in Sec-
tion 4.5.7, we used regular ORAM, here we need to use veri�able ORAM [AKST14] to ensure that the
server always answers correctly to the queries made to the ORAM in which the hashes are stored.

6.5 Verifying SPS

In this section, we show how to make the SPS scheme, authored by Stefanov et al. [SPS14] veri�able.
Note that this section is quite technical, and is not absolutely necessary for the understanding of
this thesis.

SPS relies on a hierarchical structure to ensure forward privacy. As explained in Section 4.4, we
can see SPS as levels of static SSE which are rebuilt upon modi�cation of the database. Hence, we
do not really need some dynamic veri�able data structures, static ones will su�ce.

6.5.1 Remembering SPS

The SPS construction [SPS14] consists of L+ 1 levels T0, . . . ,TL, where L = blogNc, and each
level T` is of size 2`. Each level can be seen as a map between keywords and lists of tuples of the
form (ind, op, cnt), where ind is a document index, op ∈ {add, del} the operation associated with
the tuple (addition or deletion) and cnt a unique counter. These tuples are encoded in a way that
their content is hidden unless given a token allowing decryption. This token will be unique per
keyword w and per level `, and with such a token, the server will not learn anything else than the
content of the tuples associated with the keyword w at level `. They are actually stored in a hash
table, that allows for a constant-time lookup, for a speci�c tuple (w, op, cnt), providing either the
document ind or⊥ as output. This conceptual lookup operation is denoted Γ`[w, op, cnt]. Moreover,
in a level `, all the tuples (w, ind, op, cnt) are lexicographically sorted based on key (w, ind, op).

For dynamism, the update operation exploits the leveled structure: for a new entry (addition or
deletion), it is either inserted at level 0, in the unique cell of T0, or in the �rst empty level T` with
all the entries from the lower levels T0, . . . ,T`−1: the 2`− 1 entries in the lower levels and the new
entry are indeed merged and re-ordered in T` in the lexicographic ordering based on (w, ind, op),
using an oblivious sort [GM11]. Once the tuples are sorted, one can easily cancel addition-deletion
for the same document/keyword pair, just replacing the two entries by ⊥. The previous levels are
all emptied.

To perform a search with keyword w, for each level, the server is provided the token for w,
and performs lookups to �nd all matching entry in the levels. He does that for both add and del
operations, simplifying inserted-then-deleted document/keyword pairs from the result set. However,
such a data structure can lead to a linear-time search, in the worse case.

They thus improved their approach with an additional information in the tuples. The main
drawback with the above tuples is the del operations that have to be looked for in a di�erent level
before returning a document that has been added and might have been deleted later. Also an extra
information is added to del entries, such that, at level `, given an add tuple with no matching del
entry, the server can e�ciently �nd the next add tuple with no matching del entry. This extra
information is the �eld `∗, called the target level, and the conceptual lookup operation now return
Γ`[w, op, cnt] = (`∗, ind) or⊥. In a deletion tuple, `∗ is the level where the associated addition tuple
is stored. In an addition tuple, we just set `∗ = `. If each level is now lexicographic ordered based
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on (w, `∗, ind, op), a fast procedure allows the server to �nd an addition tuple without deletion,
leading to a complexity in O

(
m log3N

)
. It can �nd and skip holes (a series of addition tuples that

have been deleted later) in each level. Unfortunately, as is, these methods do not provide veri�able
outputs to the client. Also note that SPS only supports add and del update operations, not edit+

nor edit−.
Stefanov et al. brie�y described how to make their construction secure in the malicious model.

However, although the modi�cations they propose are essential in the malicious model, these are
not su�cient to guarantee security against active adversaries.

Also, note that the generic framework that we developed above cannot be applied to SPS without
loosing the forward privacy property. Namely, repeated accesses to the (authenticated) dictionary
storing the hash of the result set leak: authenticated dictionaries are used to ensure the integrity of
the stored data, but not to hide the access pattern. Because we need to update the hash of the result
set DB(w) when updating keyword w, searching for w, and then updating w would leak that the
updated keyword has been previously searched, break the forward privacy of SPS.

We could use some kind of veri�able ORAM (i.e. ORAM secure against malicious servers), but
that would add a non negligible overhead. Instead, we will see how to �x the original SPS proposal.

6.5.2 Quick Cryptanalysis of SPS

In [SPS14], the authors claim that adding a timestamp to the entries (as we did), MAC-ing these,
returning to the client the MACs with each non deleted entry and the holes proofs (i.e. the del
entries at the edge of each hole component, together with their MAC) is enough. The client then
would have to check the size of the holes and check that they match the distance between two add
entries (as CheckResults does).

Incompletely scanned levels. One key modi�cation brought by our protocol Verif-SPS is the
veri�cation that the search has been performed over all the entries of a speci�c level. The absence of
such proofs (which is the role of non-member proofs in Verif-SPS) allows for trivial attacks where
the server omits to return part of the results (e.g., the last add entry of a level), resulting in missing
results, or part of the holes (e.g. the last hole component of a level), resulting in non matching
results.

We will see that the generation of such proofs in Verif-SPS is the main modi�cation compared to
the original SPS scheme, and that this modi�cation implies the logarithmic overhead of the basic
veri�able scheme.

Non-consecutive holes. Suppose now that the previous issue is (somehow) �xed. Unfortunately,
there is still a possible attack in the claimed security against active adversaries of SPS.

In fact, checking the size of the holes is not enough to protect against malicious servers. Say there
is, at level `, an add entry e+

∗ in a hole between add entries e+
1 and e+

2 , and that matches a del entry
e−∗ . For the sake of simplicity, we suppose that the del entries matching the hole between e+

1 and e+
2

are all at the same level, between entries e−1 and e−2 . The server could decide to split the real hole in
two, and make the client believe that e+

∗ is a non deleted matching add entry. He will, in some sort,
omit the existence of e−∗ .

However, the size of the hole will still be equal to the distance between the returned add entries
(e+

1 and e+
∗ for the �rst hole, and e+

∗ and e+
2 for the second one). In the sublinear variant of Verif-SPS,

the attack is thwarted by a procedure CheckAdjacency. It veri�es that every hole component is
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either the last of its level, or immediately followed by another hole component, and hence that no
del entry has been omitted by the server.

6.5.3 Veri�able SPS: Basic Construction

To avoid the server tampering with the data, one could MAC the tuples in the levels. This would
ensure that the server never returns to the client a tuple that was not in the level. Yet, it would not
prevent the server from not returning a matching tuple (either for addition or deletion) for a search
query.

Using veri�able hash tables and the particularities of the SPS construction, we show how we can
thwart this attack, and more generally how to make SPS veri�able at the extra cost of a veri�able
hash table per level.

To give a better insight into our veri�able SSE instantiation, we �rst give a basic construction,
itself based on the basic construction of [SPS14]. The modi�ed construction is described in Al-
gorithms 6.19, 6.20, and 6.21. It uses a static veri�able hash table instantiation Θ = (VHTSetup,
VHTGet,VHTVerify). Except for Search, the modi�cations are highlighted in underlined red.

For all of the algorithms/protocols, except Search, the main modi�cation resides in the addition
of a veri�able hash table at every level and the use of authenticated encryption. For example,
the Lookup function, in addition to retrieving the entry associated with the search token token,
operation op, and counter cnt, will also return a proof that the returned value is correct.

The modi�cations brought to the Rebuild algorithm (Algorithm 6.20) are only a bit more compli-
cated to analyze. First, the use of authenticated encryption instead of encryption without integrity
veri�cation ensures that the server only sends valid entries to the client. However, it does not prevent
the server from sending the entries in the wrong order, or to send the same entry twice. To avoid
such attacks, we need to ensure that the oblivious sort algorithm is secure, even in the presence of a
malicious server. But we also have to make sure that the server cannot replay ciphertexts generated
in the past to fool the client. So, we add to the additional data a per-level timestamp r`, incremented
every time a level is rebuilt, as well as a �ag, set to 0 or 1, to distinguish the ciphertexts produced
before and after the �rst call to o-sort. Finally, the authenticating data structure for the veri�able
hash table is initialized (line 26).

. . . e+
1 h+

1
. . . . . . h+

2 e+
∗ h+

3
. . . . . . h+

4 e+
2

. . .

fake hole fake hole

real hole

add entries in `

. . . h−1
. . . . . . h−2 e−∗ h−3

. . . . . . h−4
. . .

matches matches matches. . . . . .

omitted del entry

del entries in `

Figure 6.3 – Illustration of a non-consecutive hole attack. The adversary returns e+
∗ as a (fake) addi-

tional result, together with the proofs for non-maximal holes (h−1 , h
−
2 ) and (h−3 , h

−
4 ).
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Algorithm 6.19 The Verif-SPS construction, derived from SPS [SPS14].
Setup(DB)

1: Client chooses an encryption key esk, L+ 1 random level keys k0, . . . , kL (where L = logN ),
and a key Ke for the PRF F . The scheme’s key is KΣ = (esk, k0, . . . , kL,Ke).

2: Client initializes an empty hierarchical structure D consisting of exponentially growing levels
T0, . . . ,TL.

3: Initialize counters r0, . . . , rL to 0.
4: return (KΣ, (r0, . . . , rL), (T0, . . . ,TL))

Lookup(token, op, cnt)

1: hkey← Htoken(0||op||cnt)
2: (v, π)← VHTGet(T`,VHT`, hkey)
3: if v = ⊥ then return (⊥, π)
4: else
5: Parse v as (c1, c2).
6: (`∗, ĩnd)← c1 ⊕Htoken(1||op||cnt).
7: return (`∗, ĩnd, v, π)
8: end if

EncodeEntryesk,`(w, `
∗, ind, op, cnt)

1: token` ← F (k`, h(w))
2: hkey← Htoken`(0||op||cnt)
3: c1 ← (`∗, ind)⊕Htoken`(1||op||cnt)
4: c2 ← AEnc(esk, (`, r`),
5: (w, `∗, ind, op, cnt))
6: return (hkey, c1, c2)

Update(KΣ, op, ind,W; EDB)

1: for all w ∈W in random order do
2: Compute the target level `∗ of (w, ind, op)
3: if T0 is empty then
4: Select a fresh key k0. r0++.
5: T0 ← EncodeEntryesk,0(w, `∗, ind, op)
6: else
7: Let T` denote the �rst empty level.
8: r`++. Rebuild(`, (w, ind, op)).
9: end if

10: end for

Oblivious sorting in presence of a malicious server. Usually, the problem of oblivious sorting
is considered in the semi-honest setting, were the server only tries to infer information from the
messages he sees, but sticks to the protocol’s execution.

A solution to enable resistance against active adversaries would be to rely on memory checking
techniques, but as we saw in Section 6.1.2, these are costly an would incur a logarithmic overhead. We
could use less general veri�cation techniques using the fact that, in the case of oblivious sorting, the
client always knows which memory locations were modi�ed at what time, as I/Os are independent
from the sorted values. The client could use this property and add metadata – a timestamp and the
memory location – to each memory block used by the algorithm. Every time a block is processed,
the client will check that these data are consistent with the algorithm state. For example, when
using sorting networks [GM11], we can MAC the location in the array and an integer accounting
the last comparison executed on the item (in a sorting network, we can assign to each comparison a
unique integer) to the probabilistic encryption of the item (used to ensure the obliviousness of the
protocol). Every time an item is used by the algorithm, the client checks this MAC and ensures that
it is not an element forged by the adversary. Using authenticated encryption with additional data,
we could actually do both MAC and encryption at once, and the additional cost (compared to pure
encryption) would be negligible using modern AEAD schemes(e.g. [RBB03]). For now, we suppose
that o-sort is secure against active adversaries.



134 Chapter 6 Veri�able Searchable Encryption

Algorithm 6.20 Modi�ed Rebuild protocol of the Verif-SPS construction.
Rebuild(`, (w, `∗, ind, op, cnt)).

1: Let entry∗ ← EncodeEntryesk,Ke,k0
(w, `∗, ind, op, cnt)

2: Let B̂← {entry∗} ∪T0 ∪ . . .T`−1.
3: for all entry = (hkey, c1, c2) ∈ B̂, with original level `′ do
4: (w, `∗, ind, op, cnt)← ADec(esk, (`′, r`′), c2)
5: Overwrite entry with AEnc(esk, (`, r`, 0), (w, `∗, ind, op, cnt))
6: end for
7: B̂← o-sort(B̂), based on the lexicographic sorting key (w, `∗, ind, op).
8: for all e = AEnc(esk, (`, r`, 0), (w, `∗, ind, op, cnt)) in B̂ in sorted order do
9: if e marks the start of a new word w, for an operation op ∈ {add, del} then

10: Set cntop,w ← 0
11: e← AEnc(esk, (`, r`, 1), (w, `∗, ind, op, 0))
12: else if e and its adjacent entry are add and del operations for the same (w, `∗, ind) pair then
13: Suppress the entries by updating both entries with AEnc(esk, (`, r`, 1),⊥)

14: else Update e in B̂:
15: e← AEnc(esk, (`, r`, 1), (w, `∗, ind, op, cntop,w++))
16: end if
17: end for
18: Randomly permute B̂← o-sort(B̂), based on hkey.
19: Select a new level key k`.
20: for all entry ∈ B̂ do
21: (w, `∗, ind, op, cnt)← ADec(esk, (`, r`, 1), entry)
22: if op = add, `∗ ← `
23: (hkey, c1, c2)← EncodeEntryesk,Ke,k`(w, `

∗, ind, op, cnt)
24: Add (hkey, c1, c2) to T`

25: end for
26: (VHT`, σVHT`)← VHTSetup(T`)

Veri�able search. The idea in the simple search algorithm is to make the server send to the client
all the entries matching the searched keyword at every level `, both for op = add and op = del,
make the client perform the eliminations among these entries.

To verify that the server sent all the entries corresponding to keyword w with operation op at
level `, we use the fact that the counters used to compute the entries’ hkey are consecutive. So,
if there are c add entries at level `, for all 0 ≤ i < c, Γ`[w, add, i] 6= ⊥, and Γ`[w, add, c] = ⊥.
Consecutiveness of the cntop,w values, is ensured by the soundness of the o-sort algorithm.

Finally, as we check that the entries have the right value (and in particular that the last one is ⊥),
if the protocol does not abort, we are sure that Ĩ+

` contains all the (w, add) entries at level `, and
that Ĩ−` contains all the (w, del) entries at level `.

6.5.4 Sublinear Construction

We can also �x the sublinear version of SPS, in order to thwart the attacks presented in Section 6.5.2.
In particular, we modify the server so that he can prove to the client that he completely scanned all
levels, and that the returned holes are indeed consistent with the returned results.
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Algorithm 6.21 Simple Search algorithm for Verif-SPS. Every time that the result of a client’s
computation is REJECT, he immediately stops and returns REJECT.
Search(KΣ, w, σ; EDB)

1: Client:
2: tks← {token` = F (k`, h(w)), ` = 0, . . . , L} . Compute tokens for each level
3: The client sends tks to the server.

Server :
4: for ` = L to 0 do
5: Initialize Ĩ+

` and Ĩ−` to empty lists. cnt← 0
6: repeat
7: (`∗, ind, entry, π)← Lookup(token`, add, cnt++), Ĩ+

` [cnt]← (entry, π)
8: until entry = ⊥
9: cnt← 0

10: repeat
11: (`∗, ind, entry, π)← Lookup(token`, del, cnt++), Ĩ−` [cnt]← (entry, π)
12: until entry = ⊥
13: Send {(Ĩ+

` , Ĩ
−
` )}` to the client.

14: end for

Client:
15: Let I ← ∅
16: for ` = L to 0 do
17: for i = 0 to |Ĩ+

` | − 2 do . Check that all the elements (but the last) of the list are valid
elements

18: Parse Ĩ+
` [i] as (entry, π)

19: hkey← Htoken`(0||add||i)
20: if VHTVerify(σVHT` , hkey, entry, π) = REJECT or entry = ⊥ then
21: return REJECT
22: else
23: (`∗, ind)← entry.c1 ⊕Htoken`(1||add||i), I ← I ∪ {ind}
24: end if
25: end for
26: Parse Ĩ+

` [|Ĩ+
` | − 1] as (entry, π) . Check that the last element of the list is ⊥

27: hkey← Htoken`(0||add||(|Ĩ+
` | − 1))

28: VHTVerify(σVHT` , hkey,⊥, π)

29: Do the same as before with del instead of add, running the loop over Ĩ−` instead of Ĩ+
` , and

removing elements to I instead of adding them.
30: end for
31: return I

As in the simple search algorithm, the main threat the client has to protect against is not receiving
all the elements (either the add entries or the holes) necessary to compute the search result. Again,
we heavily rely on the structure of the levels and on how the entries’ counter increases. For example,
for each level `, the server will give a proof that for a counter cntmax, the entry Γ`[w, add, cntmax]
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is ⊥, ensuring that there is no add entry matching w with counter cnt > cntmax. We proceed
similarly for del entries.

The veri�cation of the sublinear Search algorithm is not as direct as the veri�cation of basic Search,
and we will present all the procedures needed for the generation of proofs and their veri�cation. For
the sake of readability, in the algorithms, as before, we suppose that once a call returned REJECT,
the calling procedure immediately stops and returns REJECT itself. We also omit the parameters
K , w, σ and EDB in the procedure signatures.

The Search algorithm, as described by Algorithm 6.22, calls four sub-procedures:

• ProcessLevel, as in the original SPS scheme, �nds all the tuples (w, `, ind, add) stored at level
` such that there is no corresponding entry (w, `, ind, del) in lower levels `′ < `. To do so,
it has to �nd the holes with target level `, so, for veri�cation purposes, it also returns these
holes and adds them to the hash table AllHoles that tracks all the holes ever found.

• ProveHoles takes as input all the holes found by the calls to ProcessLevel and returns a proof
for these, i.e. a proof that they are maximal and consecutive (we will explain these notions
later).

• VerifyHoles veri�es the proofs produced by ProveHoles and returns the corresponding holes.

• CheckResults checks the consistency of the results returned by ProcessLevel and produces
the result set I .

Algorithm 6.22 Sublinear Search algorithm.
Search(KΣ, w, σ; EDB)

1: Client: On input (KΣ, w), it computes tokens for each level.
2: tks← {token` = F (k`, h(w)), ` = 0, . . . , L}
3: The client sends tks to the server.

4: Server :
5: Initialize AllHoles as an empty hash table of lists.
6: for ` = 0 to L do
7: I` ← ProcessLevel(`, token`)
8: end for
9: ΠHoles ← ProveHoles(AllHoles)

10: Send (I0, . . . , IL,ΠHoles) to the client.

11: Client:
12: AllHoles← VerifyHoles(ΠHoles)
13: I ← CheckResults(I0, . . . , IL,AllHoles)
14: return I

The ProcessLevel algorithm. ProcessLevel is the key procedure described in Algorithm 6.23. It
goes through the add entries for keyword w at level ` and looks for those that were not deleted by
a subsequent deletion. If such a deletion happened, a corresponding (w, `, ind, del) entry will be
in some lower level `′ < ` (note that such an entry cannot be stored at level ` because it would
have been “simpli�ed” by the Rebuild algorithm). If this search for deletions were done on an



6.5 Verifying SPS 137

entry-by-entry basis, it would be very ine�cient, and the server would need to go through all
the add entries at level ` and the search complexity would not be better than in the simple Search
protocol.

To avoid this, if ProcessLevel found an entry that was deleted in the lower levels, it will directly
jump to the next add entry not deleted. This is where SkipHole enters: it �nds the largest collection
of successive add entries at level ` (starting at the current entry) for which we can �nd a matching
collection of del entries in lower levels (line 1). These entries are called a hole.

Algorithm 6.23 The ProcessLevel algorithm (and auxiliary procedures).
ProcessLevel(`, token`)

1: cnt← 0
2: Initialize I` as an empty list.
3: (`, ind, entry, π)← Lookup(token`, add, cnt++)
4: while entry 6= ⊥ do
5: if (w, `, ind, del) is not found in any lower levels then . Through a binary search for each

lower level
6: Append (entry, π) to I`
7: else
8: Call (cnt,Hole)← SkipHole(`, token`, ind)
9: Append Hole to I`

10: end if
11: (`, ind, entry, π)← Lookup(token`, add, cnt++)
12: end while
13: Append (entry = ⊥, π) to I` . Show that we reached the last add element in level `.
14: return I`

AppendHole(AllHoles,Hole)

1: for all (`′, `, cntx, cnty, indx, indy) ∈ Hole do
2: Append (`, cntx, cnty) to AllHoles[`′]
3: end for

SkipHole(`, token`, ind)

1: Through binary search, compute the maximum iden�er ind′ ≥ ind in level ` s.t.
count`,`,w,add(ind′, ind) + 1 = sum, with (sum,Hole)← DelSum(`, ind, ind′)

2: AppendHole(AllHoles,Hole) . Track all the generated holes.
3: return the corresponding value cnt for ind′ and Hole.

DeletedSum(`, ind, ind′)

1: sum← 0, Hole← empty list
2: for `′ = 0 to `− 1 do
3: Find the largest region [(`, indx), (`, indy)] that falls within the range [(`, ind), (`, ind′)]
4: if such a region is found then
5: Let cntx and cnty be such that (`, indx) = Γ`[w, del, cntx] and (`, indy) = Γ`[w, del, cnty]
6: sum← sum+ cnty − cntx + 1
7: Append (`′, `, cntx, cnty, indx, indy) to Hole
8: end if
9: end for

10: return (sum,Hole).
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For this, it uses DeletedSum. DeletedSum �nds in every level `′ < ` the largest region of
successive del entries whose target level is ` and document’s index comprised between ind and ind′.
It returns the sum of the size of these regions and their limits i.e. the smallest (resp. biggest) counter
cntx (resp. cnty) such that Γ`′ [w, del, cntx] = (`, indx) and indx ≥ ind (resp. Γ`′ [w, del, cnty] =
(`, indy) and indy ≤ ind′). We refer to these limits as hole components.

Finally, for the sake of veri�ability, we need to keep track of these holes. So we add them to a
hash table of lists AllHoles. AllHoles[`′] stores all the hole components at level `′. Note that, as we
process levels increasingly, the target level ` of components added to AllHoles[`′] increases similarly,
and as among levels, entries are processed with increasing counter, counters cntx and cnty also
increase. Actually, if (`1, cnt1x, cnt

1
y) and (`2, cnt2x, cnt

2
y) are two successive entries in AllHoles[`′],

`1 ≤ `2 and cnt1x ≤ cnt1y < cnt2x ≤ cnt2y . Hence, the server does not have to go through sorting to
get a sorted list (which is important for computational complexity).

In the end, ProcessLevel returns the lists I` whose elements are either add entries for w in level
` (together with some membership proof) or holes for w with target level `. The last element of this
list is always the ⊥ entry with a VHT proof corresponding to the last counter value of the main
loop (the smallest cnt for which Lookup returns ⊥).

Proving and verifying holes. The server has to prove to the client that he did not cheat when
producing the holes. To do so, we could �rst use the veri�able hash table to show that the hole
components limits are genuine del entries, which is what ProveHoles does. Unfortunately, this is
not enough: for example the server could return two holes for which the intersection of components
at a level ` is not empty, which never happens if the search protocol is run fairly. He could also
intentionally omit a del entry. Fortunately, we can use some very interesting properties of the holes
to avoid any falsi�cation of the results by the server, which we use in ProveHoles and VerifyHoles
(Algorithm 6.24).

First, let us �x a level `. We will consider only hole components or del entries whose level is `.
For such a del entry, there exists an add entry in a higher level `′. Hence it should belong to a hole
component with target level `′. Said otherwise, every del entries belong to a hole, and if the client
wants to check that the server rightly took into account every del entries, he should check that the
hole components at level ` span all its del entries. This is exactly what CheckAdjacency does, using
the fact that hole components are consecutive.

In the previous paragraph, we noticed that the elements in AllHoles[`] have components increasing
in a very particular way. Let (`1, cnt1x, cnt

1
y) be an element of AllHoles[`] The del entry with counter

value cnt1y + 1 must be either ⊥, or a del entry with target level `∗ ≥ `1 (because of the sorting
key used in Rebuild). In the latter case, it necessarily is the start of a new hole component at
level `. Hence, if (`1, cnt1x, cnt

1
y) and (`2, cnt2x, cnt

2
y) are two successive entries in AllHoles[`], we

must have `1 ≤ `2 and cnt1x ≤ cnt1y = (cnt2x − 1) < cnt2y . This condition is checked at line 3 of
CheckAdjacency. Testing that the server reached the last del entries of level ` is done by verifying a
non membership proof for counter cntlast + 1 at line 13, where cntlast is the highest counter value
encountered among the hole components of level `. The proof was produced by the server at line 10.

The CheckResults algorithm. The last thing the client has to do is to check the consistency of
the result lists I` and holes. This is what CheckResults achieves, as described in Algorithm 6.25. It
veri�es three points: �rst that every add entry in I` has no matching del entry among the holes, then
that the holes in I` are veri�ed holes, and �nally that all the add entries at level ` where considered
when searching.
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Algorithm 6.24 Prove and verify holes.
ProveHoles(AllHoles)

1: Initialize ΠHoles as an empty table of lists.
2: for ` = 0 to L do
3: cntlast ← −1
4: for all (`′, cntx, cnty, ·, ·) in AllHoles[`] in increasing order do
5: (entryx, πx)← Lookup(token`, del, cntx)
6: (entryy, πy)← Lookup(token`, del, cnty)
7: Append ((cntx, entryx, πx), (cnty, entryy, πy)) (in that order) to ΠHoles[`]
8: cntlast ← cnty
9: end for

10: (entrylast, πlast)← Lookup(token`, del, cntlast + 1) . entrylast = ⊥
11: Append πlast to ΠHoles[`]
12: end for
13: return ΠHoles

VerifyHoles(ΠHoles)

1: Initialize AllHoles as an empty table of lists.
2: for ` = 0 to L do
3: cntlast ← −1
4: for all ((cntx, entryx, πx), (cnty, entryy, πy)) ∈ ΠHoles[`] do
5: hkeyx ← Htoken`(0||del||cntx), hkeyy ← Htoken`(0||del||cnty)
6: VHTVerify(σVHT` , hkeyx, entryx, πx), VHTVerify(σVHT` , hkeyy, entryy, πy)
7: Parse entryx as (l∗x, indx, c2x), and entryy as (l∗y, indy, c2y)
8: if l∗x 6= l∗y return REJECT
9: Append (l∗x, cntx, cnty, indx, indy) to AllHoles[`]

10: cntlast ← cnty
11: end for
12: hkeylast ← Htoken`(0||del||cntlast + 1)
13: VHTVerify(σVHT` , hkeylast,⊥, πlast)
14: CheckAdjacency(AllHoles[`])
15: end for
16: return AllHoles

CheckAdjacency(AllHoles[`])

1: cnt← −1, `∗ ← 0
2: for all (`′, cntx, cnty, ., .) ∈ AllHoles[`] in increasing order do
3: if `∗ > `′, cntx 6= cnt+ 1 or cntx > cnty
4: return REJECT
5: cnt← cnty , `∗ ← `′

6: end for
7: return ACCEPT

First, one must notice that, if the Search protocol is fairly executed by the server, one cannot �nd
in I` two consecutive holes. Otherwise, it would say that the �rst hole is not maximal, unlike what
SkipHole ensures. Hence, in CheckResults (line 15), we check that there are not two consecutive
holes entries in I`. In the following, we will suppose that a hole is immediately followed by an add
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entry in lists I`.
One of the key thing to check is that the document’s index of successively considered entries

strictly increases: in ProcessLevel, the server adds to I` either add entries retrieved using an
incrementing counter or holes whose components limits indices must be larger than the previous
add entry and smaller than the next one, by construction of SkipHole. This is checked at lines 10
and 19.

Algorithm 6.25 CheckResults algorithm.
CheckResults(I0, . . . , IL,AllHoles)

1: I ← ∅
2: indlast ← −1
3: cnt← 0
4: for ` = 0 to L do
5: for all e ∈ I` do
6: if e is (entry, π) then
7: hkeyx ← Htoken`(0||add||cnt)
8: VHTVerify(σVHT` , hkey, entry, π)
9: (w, `, ind, add, cnt)← ADec(esk, (`, r`), c2) . As entry has been veri�ed, we know

that ADec returns keyword w, target level ` and operation add.
10: if indlast ≥ ind
11: return REJECT
12: indlast ← ind, cnt++, I ← I ∪ {ind}
13: else if e is a hole Hole then
14: if previous entry was a hole
15: return REJECT
16: sum← 0, indmax ← indlast
17: for all h ∈ Hole do
18: Parse h as (`′, `∗, cntx, cnty, indx, indy)
19: if `∗ 6= `, h /∈ AllHoles[`′] or indx ≤ indlast
20: return REJECT
21: indmax ← max(indmax, indy), sum← sum+ cnty − cntx + 1
22: end for
23: indlast ← indmax, cnt← cnt+ sum+ 1
24: else . e is the proof πlast
25: hkeylast ← Htoken`(0||add||cnt)
26: VHTVerify(σVHT` , hkey,⊥, πlast)
27: if e is not the last element of I`
28: return REJECT
29: end if . Test value of e
30: end for . Loop over I`
31: end for . Loop over the levels
32: return I

CheckResults would also reject when holes are incorrect, i.e. when their target level is not `,
or if they were not registered in AllHoles. Note that if a hole h is in AllHoles, it has been proved
correct by a previous ProveHole call, and we do not have to show that its components were correctly
formed and that their limits were genuine entries.
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The algorithm also checks that the add entries are correct. In particular, the counter value used
to retrieve the hkey is not provided by the server, but recomputed by the client: it is incremented
when the current element e is an add entry, and, if e is a hole, increased by its width. By doing so,
and relying on the increasing document indices, we ensure that the holes width is correct, i.e. that
the width of a hole is equal to the di�erence of counter values of neighboring add entries. Figure 6.4
illustrates this point.
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Figure 6.4 – Example of what CheckResults checks. In this example, IL4 contains the following
sequence: add entry with counter cnt1 and index ind+

1 , a hole whose components
are at levels L3, L2 and L1, and another add entry with counter cnt2 and index ind+

2 .
The upper row represents the add entries for keyword w at level L4. In orange, beige
and sand are the ones with a matching entry in the hole. The red entries are the add
entries in IL4

Merging the VHT in the level table and de-amortization. If one uses Section 6.2.2 as the
VHT instantiation Θ, one would notice that the contents of the hash tables, i.e. the entries created
by EncodeEntry, are authenticated ciphertexts (at least for the member c2) – essentially a ciphertext
associated with a MAC – which are then MACed with their position in the table. We could avoid
this second MAC by adding the position in the table to the associated data of the authenticated
encryption, and including this position as a member of the entry. All the algorithms described
previously would not change, except that the VHTVerify calls would be replaced by the veri�cation
that the decryption procedure ADec did not return REJECT when verifying a membership proof.

Moreover, this modi�cation (including the position index in the associated data) would essentially
be transparent to the oblivious sort algorithm. Hence, we could apply the de-amortization as
in [SPS14], without caring about any extra cost induced by the veri�ed hash table. Using de-
amortization, the average case complexity becomes the worst-case complexity: the update operation
takes O

(
log2N

)
time and induces O(logN ) bandwidth, in the worst case.

If we were to use another instantiation for Θ, we would have to make sure we can use de-
amortization on this instantiation to avoid unacceptable worst-case complexity.
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6.5.5 Soundness proof of Verif-SPS

The soundness relies both on the veri�able hash table and on the authenticated encryption scheme,
it is easy to see that using a hybrid argument that will successively suppose the complete soundness
of the VHT, and unforgeability of the authenticated encryption scheme, we will be able to prove
the soundness of Verif-SPS. Yet, in the proof, we will also have to suppose that SPS is also fully
correct. More formally, we have the following theorem.

Theorem 6.8 (Soundness of Verif-SPS). For every adversary A, there are adversaries B, C and D
such that

AdvSSE-snd
Verif-SPS,A(λ) ≤ N · AdvVHT-snd

Θ,B (λ) + Advae
AEnc,C(λ) + AdvSSE-corr

SPS,D (λ)

We can now give the full proof of the soundness of the Verif-SPS scheme. We will use the
following, two step, strategy:

1. We create a reduction, using hybrids, to a derivative of the game SSESound were the values
given by the adversary are ‘sound’, i.e. are either correctly veri�ed or fail veri�cation. For
example, a value issued from a veri�able hash table will never be a successful forgery.

2. We show that this game cannot be won by any adversary.

6.5.5.1 Reduction

We construct 4 games G0 to G3, G0 being (almost) the original SSESound security game. We
will go from G0 to G3 by successively assuming the soundness of the veri�able hash table Θ, the
authenticity of the encryption scheme AEnc, and �nally the correctness of Verif-SPS.

Game G0. G0 is exactly the game SSESoundVerif-SPS
A , up to one di�erence: for every VHT or

authenticated encryption veri�cation, if a forgery actually succeeded, G0 will immediately set the
�ag win to true. More formally, each call to VHTVerify(σVHT` , hkey, entry, π) is followed by the
pseudo-code

if T`[hkey] 6= entry
and VHTVerify(σVHT` , hkey, entry, π) = ACCEPT
win← true

and the decryptions tuple← ADec(esk, (`, r`), c2) by

if tuple 6= REJECT and c2 is not an encryption of tuple
win← true

The adversary A has more chances to win G0 than the original SSESound game and we have

P[SSESoundAVerif-SPS(1λ) = 1] ≤ P[G0(1λ) = 1]

Game G1. In game G1, all calls to VHTVerify(σVHT` , hkey, entry, π) (including the pseudo code
added in G0) are replaced by the following:

if T`[hkey] 6= entry
return REJECT
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return entry

Said otherwise, we suppose that all the VHTVerify calls perform as expected, rejecting forgery
attempts.

It is important to notice that, at every update, exactly one level is rebuilt. So, let us consider
sub-hybrids G0

0, G
1
0, . . . , G

N
0 , such that for all i, in Gi

0, all the tables rebuilt before the i-th update
(included) use the upper pseudo-code for veri�cation, and all the other tables rebuilt after this update
use the regular veri�cation procedure. We have that, for all 1 ≤ i ≤ N , there exists an adversary
Bi such that

P[Gi−1
0 (1λ) = 1]− P[Gi

0(1λ) = 1] ≤ AdvVHT-snd
Θ,Bi

(λ).

Bi tries to attack the soundness of the table rebuild at the i-th update. Note that Bi does not
make any call to Update in the game VHTSound (the tables are static), and the number of calls
toChallenge is upper bounded by the number of tokens sent by A.

Summing the probabilities, as G0
0 = G0 and GN

0 = G1, we have that there exists an adversary B
such that

P[G1(1λ) = 1]− P[G0(1λ) = 1] ≤ N · AdvVHT-snd
Θ,B (λ).

Game G2. In game G2, all the tentative forgeries of authenticated ciphertexts will fail: the
adversary has to give to the game valid ciphertext or these will be rejected.

Notice that, as we have from G1 that all the entries issued from the veri�able hash table are valid,
in particular, their �eld c2 has to be valid too, and hence decrypt correctly, without rejection. It
implies that the adversary can win G1 by providing forged ciphers is in the Rebuild protocol. As a
consequence, in G2, we remove all the code added in G0 after calls to ADec in the Search protocol,
without modifying the adversary’s success probability. In the rest of the paragraph, we will focus
only on the Rebuild protocol.

When running Rebuild, when decrypting a tuple, the game will always know what result he
should expect: the algorithms are deterministic, except for the encryption but it does not in�uence
the order the tuples are treated. So, we modify the game G1 the following way to give G2: in G2 all
calls to ADec are followed by:

if (w, `∗, ind, op, cnt) has not been encrypted with the same authenticated data as the one used
for decryption

return REJECT

We also do this in the o-sort protocol, which uses an authenticated encryption scheme (and associated
data too).

In G2, the game accepts to decrypt only ciphertexts that have been generated by the game
itself with the additional data that are used for the decryption. We are exactly in the case of the
authentication security game for encryption schemes and hence, there exists an adversary C such
that

P[G2(1λ) = 1]− P[G1(1λ) = 1] ≤ Advae
AEnc,C(λ)

C sees all the encryptions generated by the Rebuild algorithms (including the o-sort protocol), and
tries to forge at most once per Rebuild call (remember that the protocol halts as soon as it gets
REJECT) i.e. at most N times.

We also recall that, as we supposed o-sort to be secure against malicious adversaries, when
enumerating the entries of B̂, they come in sorted order, and are the same as the entries of the input
table.
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Game G3. In game G3, we will suppose that all the lookups behave normally: when looking
for keyword w, with operation op and counter cnt at level `, Lookup(token`, op, cnt) will actually
return an entry for keyword w. Still another way to see it is to say that the schemes behave exactly
as expected on the conceptual data structure Γ. In particular, in implies that there is no collision
when computing token` or hkey. This is ensure by the correctness of the original SPS construction,
and we have that there exists an adversary D such that

P[G3(1λ) = 1]− P[G2(1λ) = 1] ≤ AdvSSE-corr
SPS,D (λ)

Finally, when we sum up the contribution of all the games, we infer that

AdvSSE-snd
Verif-SPS,A(λ) ≤ N · AdvVHT-snd

Θ,B (λ) + Advae
AEnc,C(λ) + AdvSSE-corr

SPS,D (λ)

In the next section, we will show that P[G3 = 1] = 0.

6.5.5.2 Soundness of G3

Without loss of generality, we can suppose that the adversary never gives REJECT to the game
G3: when it the case, the current procedure would immediately halt and return REJECT, and the
�ag win will not be set to true. As a consequence, in this section, we will suppose that none of the
procedures Search or Update return REJECT. It implies that, in G3, the entries given by the server
to the client are genuine, and that ciphertexts decrypted by the client were previously encrypted
with the same authenticated data.

The �rst thing we want to prove is that the adversary cannot corrupt the table T`: its content
always re�ects the conceptual data structure Γ`.

Proposition 6.9. At anytime in the execution of the game, if (`∗, ind) = Γ`[w, op, cnt] then, in G3,
Lookup(token`, op, cnt) = (`∗, ind, ., .) with token` = F (k`, h(w))

Proof. Because of the timestamp r` and the �ags used during the rebuilding, ciphertexts generated
cannot be replayed. More precisely, all the ciphertexts generated for level ` before the reconstruction
cannot be reused because of the new value of the timestamp r` that was incremented upon rebuild.
Then, ciphertexts generated before the �rst call to o-sort cannot be reused in place of the ciphertexts
generated between the two calls to o-sort which themselves cannot be reused later: the �rsts are
encrypted using (`, r`, 0) as associated data, while the seconds use (`, r`, 1) and the lasts only (`, r`).

We conclude with the correctness of the oblivious sort algorithm: at the end of the protocol’s
execution, the entries are always correctly sorted in T`, unless it returned REJECT.

Now, we can focus on the Search protocol. We only treat the sublinear case, as the soundness of
the basic construction is immediate, and we will proceed level per level: the result set is the (disjoint)
union of the results produced by each level. For lemmas will be proven:

• AllHoles[`] forms a partition of the del entries in level `. Moreover, in each hole component,
entries are consecutive.

• At level `, all the add entries returned by the server in I` match no del entry in lower levels.

• At level `, every add entry in a hole de�ned by I` match a del entry in a lower level.

• At level `, every add entry has been returned by the server, either as a non-deleted entry, or
an entry belonging to a hole.
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Lemma 6.10. Let ` be a level, and AllHoles the hole table sent by the server after a search request
with keyword w. Let

((cntix, entry
i
x, π

i
x), (cnt

i
y, entry

i
y, π

i
y))

s
i=0

be the list AllHoles[`].

Then ({Γ`[w, del, cnt]}cnt
i
y

cnt=cntix
)si=0 is a partition of

{Γ`[w, del, cnt]}cntlastcnt=0

where cntlast is the largest integer such that Γ`[w, del, cntlast + 1] 6= ⊥

Proof. This lemma entirely relies on the procedure CheckAdjacency. It checks that the hole com-
ponents in AllHoles[`] are consecutive: if (`∗, cntx, cnty, indx, indy) and (`′∗, cnt′x, cnt

′
y, ind′x, ind′y)

are successive elements in AllHoles[`], then cntx ≤ cnty , cnt′x ≤ cnt′y and cnt′x = cnty + 1. Hence,
when CheckAdjacency accepts, we know that the sets {Γ`[w, del, cnt]}cnt

i
y

cnt=cntix
are pairwise disjoint.

This is ensured for cntx starting at 0: if the �rst element of AllHoles[`] has not cntx = 0, the
test fails. Also, in VerifyHoles, we checked that, if cntlast is the value of cnty for the last element
of AllHoles[`], it has to be that Γ`[w, del, cntlast] 6= ⊥ while Γ`[w, del, cntlast + 1] 6= ⊥. The
veri�cation spanned all the possible counter values for del entries at level `. Thus,

({Γ`[w, del, cnt]}cnt
i
y

cnt=cntix
)si=0

is a partition of {Γ`[w, del, cnt]}cntlastcnt=0 .

Lemma 6.11. Let ` be a level and I` the result list returned by the server for this level after a
search request with keyword w. Let (entry, π) be an add element of I`, with entry decrypting to
(w, `, ind, add, cnt). If Search did not return REJECT, there is no del entry matching (ind, `) in any
level `′ < `: for all c, `′ < `, Γ`′ [w, del, c] 6= (ind, `).

Proof. For this lemma, we use the guaranties o�ered by CheckResults, and in particular on the fact
that the inner variable indlast strictly increases when enumerating the elements of I`.

As a consequence, all the hole components (`′, `, cntx, cnty, indx, indy) in I` encountered before
entry are such that indy < ind (CheckResults would have failed otherwise), and all the hole
components (`′, `, cntx, cnty, indx, indy) in I` encountered after entry are such that indx > ind.

We conclude using Lemma 6.10: if there is cntdel and `′ < ` such that Γ`′ [w, del, c] = (ind, `),
there is a hole component (`′, `, cntx, cnty, indx, indy) with indx ≤ ind ≤ indy .

Lemma 6.12. Let ` be a level and I` the result list returned by the server for this level after a search
request with keyword w. Let Hole be a hole in I`, (entry, π) and (entry′, π′) the two add entries
�anking Hole in I`. entry (resp. entry′) decrypts to (w, `, ind, add, cnt) (resp. (w, `, ind′, add′, cnt′)).
If Hole is the �rst element of I`, we set cnt = 0, and if it is the last element of I`, we set cnt to the
smallest integer such that Γ`[w, add, cnt] = ⊥.
Then, for every cnt < c < cnt′, (indc, `) = Γ`[w, add, c], there exists `′ < ` and cdel such that

(indc, `) = Γ`′ [w, del, cdel]. There also is a hole component h = (`′, `, cntx, cnty, indx, indy) ∈ Hole
with cntx ≤ cdel ≤ cnty , indy < ind < indx.

Proof. Let us consider the set

∆ =
⋃

h∈Hole

{Γ`′ [w, del, cnt] |h = (`′, `, cntx, cnty, indx, indy) and cntx ≤ cnt ≤ cnty }
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Because we know that the elements of the union are pairwise disjoint, and because we checked the
size of the hole by summing the di�erence cnty − cntx + 1 for every component, we have that

|∆| = cnt′ − cnt− 1

which is the number of c such that cnt < c < cnt′.
Let h = (`′, `, cntx, cnty, indx, indy) be a hole component. As we saw earlier, we know that

T`′ re�ects the conceptual table Γ`′ , for each cntx ≤ c ≤ cnty , Γ`′ [w, del, c] = (indc, `). We also
know that every del entry in Γ`′ [w, del, c] = (indc, `

∗) (no condition on c)has a matching entry
Γ`∗ [w, add, cadd] = (indc, `

∗). Given Lemma 6.10, as the hole components at level `′ form a partition
of successive del entries at level `′, it must be that for all cntx ≤ c ≤ cnty ,

ind < indx ≤ indc ≤ indy < ind′,

where Γ`′ [w, del, c] = (indc, `).
This gives us that there are cnt′− cnt− 1 distinct add entries at level ` whose indices are strictly

comprised between ind and ind′. From entry and entry′, we also know that there are exactly
cnt′ − cnt − 1 distinct add entries at level `, Γ`[w, add, c] = (indc, `) with cnt < c < cnt′, and
ind < indc < ind′. These have to be the same ones, proving the lemma.

Lemma 6.13. Let ` be a level and I` the result list returned by the server for this level after a
search request with keyword w. For every cnt such that Γ`[w, add, cnt] = (ind, `), either there is an
entry entry ∈ I` decrypting to (w, `, ind, add, cnt) or there is a hole Hole ∈ I` with a component
h = (`′, `, cntx, cnty, indx, indy) with indx ≤ ind, and ind ≤ indy .

Proof. Let cntlast be the last counter value encountered when enumerating I`: if its last element
is an add entry decrypting to (w, `, ind, add, cnt), cntlast = cnt, if its last element is a hole
(`′, `, cntx, cnty, indx, indy), cntlast = cnt.

CheckResults ensured that Γ`[w, add, cntlast] 6= ⊥ and Γ`[w, add, cntlast + 1] = ⊥. It means
that the add entries’ count at level ` span the interval [0, cntlast].

Let c be in this interval. Suppose that, in I`, there is no entry decrypting to (w, `, indc, add, c).
We also know that in I`, the value of the counter of add entries strictly increases. Hence, there is
two counters cnt < c < cnt′ satisfying the following conditions: there is two add entries entry and
entry′ in I` decrypting to (w, `, ind, add, cnt) and (w, `, ind′, add, cnt′), entry′ is the add entry
following entry in I`.
entry and entry′ cannot be immediately successive in I`: if that were the case, we would have

cnt′ = cnt + 1 and one of entry or entry′ would decrypt to (w, `, indc, add, c). So, there is the
hole Hole between these in I`, and with Lemma 6.12, we conclude that there is a hole component
h = (`′, `, cntx, cnty, indx, indy) with indx ≤ indc ≤ indy .

With these lemmas, we can now easily show the perfect soundness of the hybrid of game G3.

Proof of Theorem 6.8. As before, we proceed level per level. So let ` be a level, and cnt such that

Γ`[w, add, cnt] 6= ⊥.

Lemma 6.13 tells us that there is either a corresponding entry entry or a correspond hole. In case
of an add entry, Lemma 6.11 guaranties us that Γ`[w, add, cnt] has not been deleted in a lower level.
In case of a hole, Lemma 6.12 implies that Γ`[w, add, cnt] as a matching del entry in a lower level.
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In the sublinear Search algorithm, the result set is constructed from the add entries of the I` lists,
which correspond to all the Γ`[w, add, cnt] that have not been deleted. If Search did not return
REJECT in game G3, it returned the correct result set DB(w).

P[G3(1λ) = 1] = 0.

Combined with the reduction of the previous section

AdvSSE-snd
Verif-SPS,A(λ) ≤ N · AdvVHT-snd

Θ,B (λ) + Advae
AEnc,C(λ) + AdvSSE-corr

SPS,D (λ).

6.5.6 Complexity

The complexity of this construction is very similar to the one of the original SPS scheme. The update
communication complexity is unchanged: during the updates, the only additional elements sent
between the client and the server are the tags of the authenticated ciphertexts (the active security of
the oblivious sort relies only on them). During the search protocols, the server will send the proofs
corresponding to every hole component, and as their are at most nw holes, consisting of logN
components, the communication complexity of the search grows from O(nw ) to O(nw · logN ).

For the time complexity, we can show that, if the VHT is instantiated using the construction
of Section 6.2.2, search has complexity O

(
aw + log2N

)
(instead of O(aw + logN )) where aw is

the number of entries matching the searched keyword in the database for the basic scheme, and
O
(
nw log3N

)
for the sublinear scheme (the asymptotic complexity is unchanged in this case), and

update has an amortized update time of O
(
log2N

)
, and O(N logN ) in the worst-case. As in the

original scheme, we can use de-amortization techniques to make update time O
(
log2N

)
in the

worst case.

6.5.6.1 Complexity of the basic scheme

Let T build(n) be the complexity of VHTSetup for an input table of size n, T prove
∈ (n) (resp. T prove

⊥ (n))
the complexity of VHTGet, i.e. the proving complexity, when queried on a key in the table (resp. a
non-member key), and T check

∈ (n) (resp. T check
⊥ (n)) the complexity of VHTVerify, i.e. the veri�cation

complexity, for a proof of an element in the table (resp. an non member element).
The Rebuild (without the VHT) algorithm takes time O

(
2``
)

when ` is the empty level to be
�lled, as the bottleneck phase is the oblivious sorting algorithm [GM11]. Computing the VHT
induces an extra T build(2`) cost, as well as using authenticated encryption and the additional sanity
checks. Hence, the worst case complexity of Update isO(N logN ) +T build(N) andO

(
log2N

)
+∑L−1

`=0 T
build(2`)/N = O

(
log2N + logN

N T build(N)
)

amortized time, as each level ` is rebuilt every
2` updates, each rebuild being of O

(
` · 2`

)
+ T build(2`) computational complexity.

The basic Search algorithm took time O(α+ logN ) in the passive adversary setting of [SPS14],
where α is the number of times the keyword was added to the database. In our case, it increases
to O

(
α(T prove

∈ (n) + T check
∈ (n)

)
+ logN(T prove

⊥ (n) + T check
⊥ (n))). To be more precise, the server

needs O(αT prove
∈ (n) + logN ) to �nd through all entries with keyword w and get the associated

proof, and for each level, it needs to produce two proofs for ⊥ (one for an add entry, the other for a
del entry), which takes O(logN · T prove

⊥ (n)) time total.
Hence, using the instantiation of Section 6.2.2, we end up with O

(
α+ log2N

)
search time and

O
(
log2N

)
amortized update time.
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6.5.6.2 Complexity of the Sublinear Scheme

The sublinear construction reuses the same Rebuild as the basic construction. Hence, we directly
have that Update takeO

(
log2N + logN

N T build(N)
)

amortized time, andO(N logN )+T build(N)

in the worst case, using the conclusions of the previous section. We will focus here on the Search
algorithm (Algorithms 6.22, 6.23, 6.24, and 6.25).

First, let us study ProcessLevel Namely, the server sends to the client L lists I` containing add
entries and holes. There are exactly m such add entries total, and we know that a hole entry must
me immediately be followed by an add entry, and there are at most m holes in the lists I`. To ensure
an add entry has no associated del entry, the server has to perform an unsuccessful binary search in
every level, taking O

(
log2N

)
time. To compute a hole, SkipHole performs a binary search on the

add entries of the current level `, an hence calls DeletedSum O(logN ) times. Then, DeletedSum
goes through all the lower levels and itself performs a binary search, taking O

(
log2N

)
. Finally, for

each level, ProcessLevel produces a proof for a key not present in the VHT, taking O(logN ). If we
sum all these contributions, ProcessLevel takes time O

(
m log3N

)
.

ProveHoles enumerates the hole components. As there are at most m holes, there are at most
m logN hole components. For each of these components, ProveHoles generate a VHT proof in
constant time (components limits are real entries in the level). It also generates a “not found” proof
for every level in O(logN ). ProveHoles takes time O(m logN · T prove

∈ (N) + logN · T prove
⊥ (N)).

On the veri�er’s side, VerifyHoles veri�esO(m logN ) of these proofs and calls CheckAdjacency,
which itself goes through all the O (m logN ) hole components. VerifyHoles also veri�es the
O(logN ) non-membership proofs inO

(
T check
⊥ (N)

)
time. Finally, CheckResults also uses the hole

components and I`’s add entries sequentially, each of them being processed in constant time.
The total veri�cation time is O

(
m logN · T check

∈ (N) + logN · T check
⊥ (N)

)
, and the total time

complexity of the search algorithm is

O
(
m log3N +m logN

(
T prove
∈ (N) + T check

∈ (N)
)

+ logN
(
T prove
⊥ (N) + T check

⊥ (N)
))
.

Instantiated with the static VHT of Section 6.2.2, it gives us a search complexity of O
(
m log3N

)
.
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Invincibility lies in the defence; the
possibility of victory in the attack.

The Art of War – Sun Tzu



Leakage Abuse Attacks and
How to Thwart Them 7

L
eakage is fundamental for searchable encryption, as we saw in previous chapters.
Some minimal leakage is required to achieve good performance. From the security de�-
nitions and the schemes’ security proof, we can quickly ensure that the server cannot learn

more information than what the leakage function prescribes. But what does the leakage means in
practice? Up to what extent the allowed leakage is not already too much?

One step towards the understanding of leakage is the recent development of leakage abuse attacks
that aim at decrypting queries and/or the database using only the leaking information [IKK12;
CGPR15; KKNO16]. None of these attacks invalidate in any way the security proofs of the schemes
they target: they only use the leakage to break the con�dentiality of the database or of the queries.
Yet, we will see that they all fall outside of the security model. Indeed, none of the possible adversarial
knowledge described in [CGPR15] is captured by the security de�nition.

In this chapter, following our work with Fouque [BF17], we will try to understand the discrepancy
between the security proofs and the leakage abuse attacks, we will give new security de�nitions
capturing the attacks, and �nally provide methods to assess the security of existing constructions,
and use them to construct schemes provably secure against such attacks.
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7.1 Leakage Abuse Attacks and their Origin

The terminology ‘inference attack’ was introduced by Islam et al. in [IKK12], who used co-occurrence
information on an encrypted database. Their attack was improved by Cash et al. [CGPR15], who
used the term ‘leakage abuse attack’ to describe attacks that only use the leakage of a scheme to
break its security, rather than exploiting some particular weakness in the construction.

Both of these attacks suppose knowledge (total, partial or distributional) of the database by the
adversary. In [IKK12], he knows the distribution D of the co-occurrence matrix of the targeted set
of keywords. From the observation of the document access pattern (the list of results), the adversary
builds a co-occurrence matrix that follows the distribution D, up to rows and columns permutation.
Using simulated annealing, he will �nd this permutation, which will be the match between queries
and keywords.

The count attack of [CGPR15] also uses a co-occurrence matrix, but uses it only to leverage some
prior knowledge issued from the uniqueness of the number of results for some keywords: there
are some keywords w such that no other keyword w′ match the exact same number of documents.
Hence, for the full or partial knowledge of the database, the adversary is able to decrypt the queries
keyword.

On the other side, the attack of Kellaris et al. [KKNO16] targets range queries, and only supposes
that the queries are performed uniformly at random to recover the entire dataset, using only the
number of results for each query. In particular, this attack is successful even against ORAM-based
constructions: even though they only leak the result count, this is su�cient to break the dataset’s
secrecy.

Note that all these attacks are passive and hence, non-adaptive: the adversary does not choose
either the database, or the queries. However, adaptive attacks do exist: some very e�cient �les
injection attacks presented by Zhang et al. [ZKP16] are adaptive and fall in the category of leakage
abuse attacks. In order to decrypt a previous search query, the adversary uses the update leakage
of the scheme and adaptively inserts a sequence of well crafted documents in the database. Yet, as
we saw in Chapter 4 these adaptive attacks can be circumvented using forward-secure searchable
encryption schemes, and to our knowledge, except these ones, all the existing leakage abuse attacks
are not adaptive.

Why does leakage abuse work? A very important question that consequently arises is the
following. Why schemes that are proven secure in the indistinguishability-based security model can
be broken only using the leakage, while the de�nition states that the adversary should not be able
to distinguish two executions of the SE scheme with the same leakage?

This paradox is particularly apparent for all the leakage targeted by the previously mentioned
works, as, for these leakage pro�les, the very important observation of Curtmola et al. [CGKO06,
Section 4.2] stands:

Note that the existence of a second history with the same trace is a necessary assumption,
otherwise the trace would immediately leak all information about the history.

Namely, it is fairly easy, given a database and queries list, to construct an other database and queries
list with the exact same leakage, for all the common leakage used in searchable encryption (e.g. one
could permute the database’s keywords): histories are non-singular.

Yet, attacks like the one of Islam et al. [IKK12] or the count attack of [CGPR15] suppose some
server knowledge of the database. This knowledge pins the database in the security proof: for the
proof to be useful in this setting, one needs to �nd two di�erent lists of queries generating the exact
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same leakage with the same (public) database. And the whole point of leakage abuse attacks is
that this is impossible: knowing the database, the queries’ list is uniquely de�ned by the leakage.
For example, once the database is committed to, one cannot permute the keywords anymore to
construct a di�erent history with the same leakage. Also, the frequency of words in the English
language is �xed, so if the adversary knows that a dataset stores some English-written documents,
any syntactic permutation of the keywords would not hide the real keywords.

A similar point can be made with the attacks in [KKNO16]: queries are known to be uniform, and
many of them are performed. And for the active attacks of Zhang et al. [ZKP16] too, but instead of
controlling the database, the attacker controls some update queries as he injects documents he has
purposely built.

In all of these examples, the adversary can decrypt queries and/or the database because they are
unique given the constraints (�xed database, knowledge of the queries distribution, knowledge or
control of some updates, . . . ) and the leakage.

Another way to see this issue with security de�nitions for SE is the following: the existing
de�nitions protect the database and the queries as a whole, but once one part gets leaked (e.g. the
database in [CGPR15]) these de�nitions are of no use anymore. If one only wants to protect the
queries, it might be more suitable to use private information retrieval (PIR) de�nitions [KO97].

On the meaningfulness of security de�nitions. A parallel can be made with the CPA security
de�nition for encryption: the de�nition states that the adversary has to give two messages of equal
length to the challenger. If the message space contains a message with a unique length, this message
is not protected by the security de�nition. If every element of the message space has a unique length,
any scheme (e.g. a scheme whose encryption function is the identity) can be shown CPA-secure
although it is trivially insecure: it will be impossible for an adversary to �nd a pair of same length
messages on which to be challenged. In this speci�c setting, the CPA security de�nition is void, as
is the indistinguishability based security de�nition for SE with prior knowledge.

7.2 Fixing the Security De�nition

We saw in the previous section that searchable encryption fails against leakage abuse attacks are
because there is uniqueness of histories given some constraints (the leakage plus other external
constraints such as the distribution of queries or the publicity of the dataset). To �x this problem, a
searchable encryption scheme’s leakage function must be so that, given a constraint, histories are
no longer uniquely de�ned by the leakage function.

In this section, we propose new tools and de�nitions to capture leakage abuse attacks. Also, to
avoid verbosity, in this chapter, we unify search and updates queries. Both will be denoted with the
letter q and the execution of the query will be Query(q), the Query function making the dispatch
between searches and updates. We proceed similarly for LQuery.

7.2.1 Constraints

De�ning constraints is a way to formalize that the adversary knows some information about the
history. In particular, we must be able to tell if a history conforms to the information known by the
adversary. We could ask the adversary to represent this information as the known database plus the
list of queries he knows, but that would be overly restrictive: we would not be able to represent
partial knowledge.
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A more general way to represent this knowledge is by using constraints de�ned by a predicate
over histories: the history H satis�es the constraint C if and only if C(H) = true. However, we
need an adaptive way to de�ne constraints: the adversary may want to insert a document depending
on the transcript of previous queries. This is what De�nition 7.1 captures.

De�nition 7.1 (Constraint). A constraint C = (C0, C1, . . . , Cn) (with n = poly(λ)) over a set of
databases DB and set of queries Q is a sequence of algorithms such that, for DB ∈ DB,

C0(DB) = (flag0, st0)

where flag0 is true or false and st0 captures C0’s state, and for q ∈ Q,

Ci(q, flagi−1, sti−1) = (flagi, sti).

The constraint is consistent if Ci(., false, .) = (false, .) (once the constraint evaluates to false, it
remains false).

For a historyH = (DB, q1, . . . , qn), we note C(H) the evaluation of

C(H) := Cn(qn, Cn−1(qn−1, Cn−2(. . . , C0(DB)))).

IfC(H) = true, we say thatH satis�esC . A constraintC is valid is there exists two di�erent e�ciently
constructible historiesH andH ′ satisfying C .

The validity of the constraint makes sure that the adversary does not know everything about the
history. Note that this de�nition of constraints does not extend to distributional knowledge, and
in Section 7.2.5.2, we study a security de�nition supporting prior distributional knowledge by the
adversary. In the following, and except for Section 7.2.5.2, we will restrict ourselves to deterministic
knowledge by the server. Also, to simplify the notations, we will omit passing the states sti. In this
chapter, we will only consider valid constraints.

We also want to formalize the fact that some elements of the history are completely unknown to
the adversary, i.e. that their are left free from constraint.

De�nition 7.2 (Free history component). Let C be a constraint. We say that C lets the database free
if, for every historyH = (DB, q1, . . . , qn) satisfying C , for every DB′ ∈ DB,H ′ = (DB′, q1, . . . , qn)
also satis�es C .
We say the C lets the i-th query free if for every history H = (DB, q1, . . . , qn) satisfying C , for
every search (resp. update) query q if qi is a search (resp. update) query,H ′ = (DB′, q1, . . . , qi−1, q,
qi+1, . . . , qn) also satis�es C .

Finally, another very important notion is the one of acceptable constraint, that will help us to
give non-void security de�nition: as explained in Section 7.1, given a constraint C and a leakage
function L, for every history H we want to be able to �nd a di�erent history satisfying C with the
same leakage.

De�nition 7.3 (Acceptable constraint). A constraint C is L-acceptable for some leakage L if, for
every e�ciently computable history H satisfying C , there exists an e�ciently computable H ′ 6= H
satisfying C such that L(H) = L(H ′).
A set of constraints C is said to be L-acceptable if all its elements are L-acceptable.

Section 7.2.3 will give examples of constraints. We �rst explain how we will formally use this
new tool.
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7.2.2 Constrained Security

Now that we have formally de�ned what are the constraints, we can use them to give a new �avor
of security for history satisfying these constraints.

De�nition 7.4 (Constrained adaptive indistinguishability). Let Σ = (Setup,Search,Update) be an
SE scheme, λ the security parameter, andA a stateful algorithm. Let L be a leakage function and C be a
set of L-acceptable constraints. We can de�ne the notion of constrained adaptive indistinguishability
using the SSEIndΣ,L,C game described in Figure 7.1.

Init(C0,DB0,DB1)

if LStp(DB0) 6= LStp(DB1)
Abort game

b
$← {0, 1}

Init H0 to DB0, and H1 to DB1

(EDB,KΣ, σ)
$← Setup(DBb)

return EDB

Final(b′)

if C /∈ C or C(H0) = false
or C(H1) = false then

return false
else
return b = b′

end if

Query(Ci, q
0
i , q

1
i )

if LQuery(q0
i ) 6= LQuery(q1

i )
Abort game

Append q0 to H0 and q1 to H1

(R, σ, τ ; EDB)
$← Query(KΣ, σ, q

b
i ; EDB)

return τ

Figure 7.1 – SSEIndΣ,L,C: Constrained indistinguishability game for the SSE scheme Σ = (Setup,
Search,Update), with the leakage function L = (LStp,LSrch,LUpdt), and family of
constraints C.

SSEIndΣ,L,C is almost identical to SSEIndΣ,L (Figure 3.2), with the restrictions that, for H0 =
(DB0, q0

1, . . . , q
0
n) andH1 = (DB1, q1

1, . . . , q
1
n),

• C ∈ C, C(H0) = true, and C(H1) = true ;

• L(H0) = L(H1).

We say that Σ is (L,C)-constrained-adaptively-indistinguishable if for any polynomial-time adver-
sary A,

AdvSSE-ind
Σ,L,C,A(λ) =

∣∣∣∣12 − P[SSEIndAΣ,L,C(λ) = 1]

∣∣∣∣ ≤ negl(λ) .

De�nition 7.4 is similar to the original SE security de�nition (De�nition 3.3), with the main
di�erence being the introduction of the condition that both histories must satisfy the constraint.

Note that a weaker, non-adaptive security notion can be easily derived from De�nition 7.4 by
making the adversary output the whole constraint and histories at once, at the beginning of the
game.

If the leakage function is probabilistic, we replace the last restriction by the condition that the
distribution of L(H0) and L(H1) must be indistinguishable, as de�ned in Section 3.1.3.2 for the
regular security de�nition.
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We underline again that the constraint can be seen as some information the server knows about
the histories: the histories both have to satisfy the same constraint.

The fact that the constraints are acceptable implies that the de�nition is not void. Also, we can
prove the following theorem, stating that we only have to prove (resp. give counter-examples of)
the acceptability of some constraints given some common leakage function L to show the security
(resp. insecurity) of existing schemes.

Theorem 7.1. Let Σ = (Setup,Search,Update) be an SE scheme, and C a set of constraints. If Σ is
L-adaptive-indistinguishability secure, and C is L-acceptable, then Σ is (L,C)-constrained-adaptive-
indistinguishability secure.

Proof. Suppose C is L-acceptable. Then, for any satisfying pair (H0, H1) of histories such that
L(H0) = L(H1), the views of the adversary will be indistinguishable, from the L-adaptive-
indistinguishability.

7.2.3 Examples of Constraints

Using these constraints, it is easy to model the fact that the adversary knows some information
about the database or about some queries. This section gives example of constraints for existing
leakage abuse attacks.

Prior knowledge of the database. Let us consider the setting of the count attack of Cash et
al. [CGPR15]: the adversary knows the database DB and uses the leakage of the search queries to
decrypt them. In the security de�nition, we want to capture that the adversary knows DB.

To do so, we will use the predicate CDB that returns true if and only if the database of the input
history is DB. Used in the security de�nition, this predicate will ensure that the both challenge
histories’ database is DB, and that all the queries are left free. [CGPR15, Section 4.2] shows that, for
the leakage function L = L1 (the repetition of queries, the number of documents matching each
queries and, for every pair of queries, the documents in common), CDB is not L1-acceptable: many
keywords have a unique number of matching documents, and as the adversary knows the database,
queries on these keywords can be decrypted just from the results count, and all the others queries
from co-occurrence information.

More generally, we model the fact that the adversary knows the database by considering the set
CDB = {CDB,DB ∈ DB} where DB is the set of polynomially computable databases.

Known documents subset. We similarly de�ne the partial knowledge of the dataset: if the
adversary knows that the database contains documents D1, . . . , D`, we will use the constraint
CD1,...,D` that returns true if and only if DB contains Di for all i. Cash et al. also showed that for
the leakage function L = L3 (which leaks the pattern of keyword occurrences in documents – but
not the occurrence count), CD1,...,D` is not L3 acceptable [CGPR15, Section 5.1].

File injection attacks. File injection attacks (cf. Section 4.1 and [ZKP16]) are also captured by
this formalization. Say the attacker inserts ` documents D1, . . . , D`, Dj being inserted during the
ij-th query. We construct C so that C0(.) always outputs true (the adversary does not know the
database at the beginning), Cij (flag, q) outputs true if and only if flag is true and q is the query
inserting Dj in the database (the ij-th query is forced to be the insertion of Dij ), and Ci(flag, q)
outputs flag when i /∈ {i1, . . . , i`} (for all the other queries, there is no constraint).
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This constraint can be used both for the non-adaptive and the adaptive attacks of Zhang et al..
For the non-adaptive attack, the adversary will choose the Dj so that he will be able to run a binary
search for all the subsequent search queries. For the adaptive attack, to break the privacy of a
previous search query, the adversary will choose the successive documents to be inserted using the
update leakage of the previously insertion query. We refer to [ZKP16] and Section 4.1 for further
details on these attacks.

As before, we can generalize all �le injection attacks by considering the constraints for all the
polynomially constructible lists of pairs {(Dj , ij)}1≤j≤`. Hence, [ZKP16] shows that this set of
constraints is not L-acceptable when L leaks the �le-access pattern (which is the case for all the
existing non-ORAM-based SE schemes).

7.2.4 Devising New Leakage Abuse Attacks Using Constraints

For now, we have used constraints as as way to formalize the security of schemes against leakage
abuse attacks. But we can also use them as a way to construct new attacks.

Indeed, with leakage abuse attacks, we suppose that the targeted scheme is L-indistinguishable
for some leakage function L, and breaking the (L,C)-constrained-indistinguishability for some set
of constraints C implies that C is not L-acceptable. To mount a new attack, one could then just check
if there exists an history satisfying C ∈ C such that no other history satisfying C has the same
leakage. Even though this step can be (very) fastidious by hand, it can be automated using constraint
programming. However, we would have to make sure that the adversarial knowledge induced by
the constraint is realistic and reasonable (e.g. that there is not too much prior knowledge).

7.2.5 Extending the Security De�nition

The new constrained security de�nition, despite being satisfactory because it solves the de�nitional
issue we had with leakage abuse attacks, still is not enough in terms of real-world security.

7.2.5.1 Extension to More Than Two Histories

Indeed, it ensures that the adversary will not be able to distinguish between two histories. Yet, when
proposed k di�erent histories satisfying the same constraint and sharing the same leakage, he could
be able to easily discard one of these. Said otherwise, De�nition 7.4 guarantees us that there is some
uncertainty for the adversary, but not how much: the security de�nition only guarantees one bit of
security.

However, we can extend it by modifying the SSEIndAΣ,L,C(λ) game: instead of adaptively out-
putting a pair of histories, A could output k of them, and the challenger randomly picks the one to
be guessed. For this de�nition to make sense, we will have to make sure that k constrained histories
can actually be found, and we also have to extend the de�nition of acceptable constraints.

De�nition 7.5 (Extended acceptable constraint). A constraintC is (L, k)-acceptable for some leakage
L and integer k > 1 if, for every e�ciently computable historyH0 satisfying C (C(H0) = true), there
exists k − 1 e�ciently computable {H i}1≤i≤k−1 such thatH i 6= Hj for i 6= j, that are all satisfying
C , and L(H0) = · · · = L(Hk−1)

A set of constraints C is said to be (L, k)-acceptable if and only if all its elements are (L, k)-acceptable.

De�nition 7.6 (Extended constrained adaptive indistinguishability). Let Σ = (Setup,Search,
Update) be an SE scheme, λ the security parameter, and A a stateful algorithm. Let C be a set of
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(L, k)-acceptable constraints. We can de�ne the notion of constrained adaptive indistinguishability
using the SSEIndΣ,L,C,k game described in Figure 7.2.

Init(C0,DB0, . . . ,DBk−1)

if ∃u, v s.t. LStp(DBu) 6= LStp(DBv)
Abort game

`
$← {0, . . . , k − 1}

for u = 0 to k − 1 do
Init Hu to DBu

end for
(EDB,KΣ, σ)

$← Setup(DB`)
return EDB

Final(`′)

if C /∈ C or ∃u ∈ {0, . . . , k − 1}
such that C(Hu) = false then

return false
else
return ` = `′

end if

Query(Ci, q
0
i , . . . , q

k−1
i )

if ∃u, v such that LQuery(qui ) 6= LQuery(qvi )
Abort game

for u = 0 to k − 1 do
Append qu to Hu

end for
(R, σ, τ ; EDB)

$← Search(KΣ, σ, q
`
i ; EDB)

return τ

Figure 7.2 – SSEIndΣ,L,C,k: Extended constrained indistinguishability game for the SSE scheme
Σ = (Setup,Search,Update), with the leakage function L = (LStp,LSrch,LUpdt),
family of constraints C, and with k possible histories.

We say that Σ is (L,C, k)-constrained-adaptively-indistinguishable if for any polynomial-time
adversary A,

AdvSSE-ind
Σ,L,C,k,A(λ) =

∣∣∣∣1k − P[SSEIndAΣ,L,C,k(λ)]

∣∣∣∣ ≤ negl(λ) .

An (L,C, k)-constrained-adaptively-indistinguishable scheme o�ers at least log k bits of security.
Extended constrained indistinguishability is implied by regular indistinguishability and extended
acceptability of constraints, as stated in Theorem 7.2.

Theorem 7.2. Let Σ = (Setup,Search,Update) be an SE scheme, and C a set of constraints. If Σ
is L-adaptive-indistinguishability secure, and C is (L, k)-acceptable, then Σ is (L,C, k)-constrained-
adaptive-indistinguishability secure.

Proof. From Theorem 7.1, we know that Σ is (L,C)-constrained-adaptive-indistinguishability se-
cure. So we must show that (L,C)-constrained-adaptive-indistinguishability implies (L,C, k)-
constrained-adaptive-indistinguishability. Note that, as C is (L, k)-acceptable, the SSEIndAΣ,L,C,k
game is not void.

Let A be an adversary in the SSEIndAΣ,L,C,k game. We construct an adversary B against the
SSEIndAΣ,L,C game in the following way.
B starts by randomly picking two integers k0, k1 ∈ {0, . . . , k − 1}. Then, B starts A and receives

k databases (DB0, . . . ,DBk−1). Upon giving the pair (DBk0 ,DBk1) to the challenger, B receives
the challenge EDB∗ which he forwards to A. Then A repeatedly outputs k queries (q0

i , . . . , q
k−1
i ),

B outputs (qk0
i , q

k1
i ) to the game, receives back the transcript τ ∗i and forwards it to A. Eventually

A outputs an integer k′. If k′ = k0, B output b′ = 0, if k′ = k1, B outputs b′ = 1, and otherwise
outputs 0 with probability 1/2 and 1 with probability 1/2.
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We know have to evaluate P[b = b′], where b is the random bit picked by the challenger.

P[b = b′] = P[b = b′ ∩ k′ ∈ {k0, k1}] + P[b = b′|k′ /∈ {k0, k1}] · P[k′ /∈ {k0, k1}]

= P[A wins the SSEIndAΣ,L,C,k game] +
1

2
(1− P[k′ ∈ {k0, k1}])

We can also evaluate P[k′ ∈ {k0, k1}]:

P[k′ ∈ {k0, k1}] = P[k′ = k0] + P[k′ = k1]

=
1

2
(P[k′ = kb|b = 0] + P[k′ = k1]) +

1

2
(P[k′ = k0] + P[k′ = kb|b = 1])

As k0 and k1 are uniformly picked in {0, . . . , k − 1}, and as P[k′ = kb] is the probability that A
wins the 1-out-of-k indistinguishability game, we have

P[k′ ∈ {k0, k1}] = P[A wins the SSEIndAΣ,L,C,k game] +
1

k

Finally, we can conclude that

AdvSSE-ind
Σ,L,C,A(λ) =

1

2
AdvSSE-ind

Σ,L,C,k,A(λ).

7.2.5.2 Extension to Distributional Knowledge

We saw in Section 7.2.1 that the constraint-based de�nition did not capture distributional knowledge
of the adversary on the database or on the queries. Here we propose a variation of the constrained
adaptive indistinguishability security de�nition that will capture this kind of prior knowledge.

The idea is that the adversary, instead of a history and a constraint, will give to the challenger
a pair of history distributions that will be used to sample the challenges. Before giving the actual
security de�nition, we have to de�ne the notion of acceptable set of distributions, similarly to the
way we de�ned acceptable constraints in Section 7.2.1. In the following, for a distribution D of
histories, we de�ne L(D) as the distribution of {L(H) s.t. H $← D}

De�nition 7.7 (Acceptable set of distribution). A setD of history distributions is L-acceptable for
some leakage L if, for every e�ciently computable distribution D ∈ D, there exists an e�ciently
computable D′ ∈ D di�erent from D such that L(D) and L(D′) are indistinguishable.

De�nition 7.8 (Distribution indistinguishability for SE). Let Σ = (Setup,Search,Update) be an SE
scheme, λ the security parameter, andA a stateful algorithm. LetD be a set ofL-acceptable distribution.
We can de�ne the notion of distribution adaptive indistinguishability using the SSEIndAL,D(λ) game
de�ne in Figure 7.3. In the game, we decompose a history distribution D as a sequence of database and
query distribution (D,Q1, . . . ,Qn)

We say that Σ is (L,D)-distribution-adaptively-indistinguishable if for any polynomial-time adver-
sary A,

AdvSSE-ind
Σ,L,D,A(λ) =

∣∣∣∣P[SSEIndAL,D(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .
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Init(DB0,DB1)

if LStp(DB) 6≈ LStp(DB)
Abort game

b
$← {0, 1}

DB
$← DBb

(EDB,KΣ, σ)
$← Setup(DB)

return EDB

Final(b′)

if D0 ∈ D and D1 ∈ D
return b = b′

return 0

Query(Q0
i ,Q1

i )

if LQuery(Q0
i ) 6≈ LQuery(Q1

i )
Abort game

q
$← Qb

(R, σ, τ ; EDB)
$← Search(KΣ, σ, q; EDB)

return τ

Figure 7.3 – SSEIndΣ,L,D: Distribution indistinguishability game for the SSE scheme Σ = (Setup,
Search,Update), with the leakage function L = (LStp,LSrch,LUpdt), and family of
history distribution D.

If we look at Kellaris et al.’s paper [KKNO16], we can see that our security de�nition actually
capture their adversarial setting for their attack on encrypted databases supporting range queries.
Indeed the set of distribution to be considered is the set DDB = {DDB|DB ∈ DB} of distribution
DDB such that the database distribution is reduced to ‘deterministically’ output only one element
DB, and the queries distribution is uniform over all the range queries.

Kellaris et al. show that, for unbounded histories, DDB is not L-acceptable, where L is the
function leaking the number of results of a query [KKNO16, Section 4].

7.3 Keywords Clustering

Section 7.2 gives us the formal tools to assess the security of a SE construction. Yet these tools
are not constructive: for a given constraint and history, it is hard to tell how many other histories
satisfying the constraint have the same leakage, or even if one exists.

In this section, we propose an easy way to evaluate the security of leakage functions for a usual
class of constraints (partial or complete knowledge of the database): this approach will allow for
queries’ privacy protection.

7.3.1 Regrouping Keywords with Equal Leakage

We will suppose as, a starting point, that the leakage function only depends on the query itself and
on the state of the database: L(q) can be written as a stateless function fL of q and DB.

We make the following very simple observation: let C be a constraint, H = (DB, q1, . . . , qn)
an history satisfying C , and q, q′ be two queries such that H̃ = H||q = (DB, q1, . . . , qn, q) and
H̃ ′ = H||q′ = (DB, q1, . . . , qn, q

′) are both satisfying C . Then, if fL(DB, q) = fL(DB, q′), H̃ and
H̃ ′ are two histories with the same leakage satisfying C . This observation can be iterated to easily
create histories satisfying the constraint and with the same leakage, showing the acceptability of
the said constraint.

More generally, a clustering Γ = {G1, . . . , Gm} of queries induced by the leakage L after history
H is a partition of the queries setQ for which, in every subset, queries share the same leakage after
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running the history H :

m⋃
i=1

Gi = Q

∀i 6= j, Gi

⋂
Gj = ∅

and ∀q, q′ ∈ Gi, L(H, q) = L(H, q′),

where L(H, q) is the output of L(q) after having been run on each element of H . In the following,
we denote by ΓL(H) the clustering induced byL afterH , i.e. the clustering for which it is impossible
to merge clusters with the same leakage. Formally, for ΓL(H) = {G1, . . . , Gm}, we have

∀i 6= j,∀q ∈ Gi,∀q′ ∈ Gj , L(H, q) 6= L(H, q′).

Also, we denote by ΓL,C(H) the clustering of the subset QC(H) of queries q such that C(H||q) =
true. We can easily see that, in the speci�c case studied before, where L(q) is a function of DB and
q only, ΓL only depends on DB and, in the static case, not on previous queries.

We want that every cluster of ΓL,C(H) contains at least two elements. If this is not the case, one
is able to construct an historyH satisfying C without having any di�erent historyH ′ with the same
leakage pro�le, also satisfying C : C will not be L-acceptable, and this may lead to a new leakage
abuse attack. Yet, this only makes sense if |QC(H)| > 1 (there is more than one satisfying query).

In the opposite, we can show that when there is strictly more than one element in each cluster of
theL-induced clustering applied on every history satisfyingC ,C will beL-acceptable, as formalized
in Proposition 7.3.

Proposition 7.3. Let C be a constraint, and L a leakage function. If for every historyH satisfying C ,
the clustering ΓL,C(H) = {G1, . . . , Gm} is such that |Gi| ≥ k for all i, then C is (L, k)-acceptable.

Unfortunately, the condition that |Gi| ≥ k is very strong: constraints �xing a particular query
will never verify it. On the other side, it looks very hard to give a better result. Take for example a
static scheme whose leakage function L gives away the search pattern, i.e. for a search query q after
the queries (q1, . . . , qn), the set sp(q) = {i|qi = q}, and consider the constraint C(H) which return
true if and only if DB = DB and q2 = q (the database and second query are �xed). Then C2,q will
not be L-acceptable: H = (DB, q, q) has no matching history satisfying C with the same leakage.

As the search pattern is leaked for almost all practical SE schemes, we can see that generic
constrained security is very hard to achieve. Hence, in the following, we will restrict ourselves to
common constraints, i.e. common adversarial prior knowledge in leakage abuse attacks.

7.3.2 Applications to Common Leakage Pro�les and Constraints

In this section, we will see how to use the clustering approach to assess the security of single-
keyword SE schemes with simple, yet common leakage, against existing attacks. Let us �rst focus
on static schemes.

Result length leakage. All (reasonably e�cient) schemes leak at least the number of matches of a
search query, and even this leakage can break the queries’ privacy, as shown by Cash et al. [CGPR15]
(63% of the 500 most common words of the Enron database have a unique result count). In particular,
this implies that ORAM-based schemes [GMP16], whose leakage Llen is limited to the size of the
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database and to the number of queries’ matches, are not resilient to leakage abuse attacks when the
adversary knows the database: CDB is not Llen-acceptable.

Now, suppose that we add to a scheme with Llen leakage a padding mechanism such that, for
every keyword, there is a di�erent keyword with the same number of matching documents. The
leakage function is now slightly modi�ed to output the number of results, including fake documents,
for a search query, giving the function Lα−padlen , where αwill be the minimum size of clusters induced
by Lα−padlen . Then, from Proposition 7.3, we have that CDB is (Lα−padlen , α)-acceptable.

Yet, using the fact that Lα−padlen (q) is only a function of DB and q (and does not depend on previous
queries), we can show a more general result, also better in terms of security.

Proposition 7.4. Let C be a constraint with k free queries (cf. De�nition 7.2), and L a leakage
function such that L(q) is a stateless function of DB and q. Then the clustering ΓL(H) only depends
on DB. Let α = mini |Gi|. Then C is (L, αk)-acceptable.

The idea behind Proposition 7.4 is that we can change any of the k free queries of an history H
by picking a di�erent query in the same cluster, without modifying the leakage nor making the C
not satis�ed. As the k queries are free and the leakage of each query does not depend on the other
ones, we can combine all the possibilities and create αk histories with the same leakage.

Proposition 7.4 gives a security level that is a lot better than the one implied by Proposition 7.3:
(L, α)-acceptability for Proposition 7.3 vs. (L, αk)-acceptability for Proposition 7.4. This last
proposition actually o�ers logα bits of security for each search query, while the �rst one only
o�ered security for the whole history and not individual query.

Hence, we only have to design a padding algorithm to ensure the security of ORAM-based schemes
against attackers with prior knowledge of the database. We present such an algorithm in Section 7.4.

Result length and search pattern. Unfortunately, Llen leakage only covers not really practical
solutions. Many of the existing static schemes also leak the search pattern, the repetition of search
queries. It is similar to the L1 leakage of [CGPR15], but L1 is not result hiding and leaks searched
keywords co-occurrence. We denote this leakage function L1RH . In particular, we are no longer in
the setting of Proposition 7.4 where the leakage is independent of the past queries. Also, even if we
use padding to hide the results length (and end up with leakage function L1α−padRH ), Proposition 7.3
does not apply either: it is easy to construct an history such that the clustering Γ

L1α−padRH ,CDB(H)

has clusters containing only one query (for repeating queries).
However, we can still show CDB is an (L1α−padRH , α)-acceptable set of constraints, where α is the

minimum cluster size (over all constructible databases). Indeed, as constraints in CDB leave all
queries free, for every history H = (DB, q1, . . . , qn), we can generate a di�erent history H ′ with
the same leakage by choosing another �rst query q 6= q1 matching the same number of documents,
and changing all queries qi = q1 to q. Also, if there are queries qj = q in H , we switch them to q1.
This gives us a history H ′ 6= H with the same leakage as H , and as we have at least α− 1 choices
for q, we infer the (L1α−padRH , α)-acceptability.

Finally, it is interesting to notice that, if we force queries to be di�erent (e.g. using a dedicated
constraint), we can show a better result. Namely, let CDB,k be the set of constraints �xing the
database and satis�ed by histories with k search queries that are pairwise di�erent. Then CDB,k

is (L1α−padRH , β(α, k))-acceptable where β(α, k) = a!
(a−k−1)! for k ≤ α and β(α, k) = a! otherwise.

This result might be surprising: we add more constraints, but we have a higher apparent security
level. However this is consistent with our security de�nitions, yet counter-intuitive: indeed, adding
the pairwise distinct queries constraint reduces the space of histories satisfying the constraints,
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and somewhat arti�cially removed the histories that had only α− 1 matching histories with the
same constraint. We can also interpret this as the fact that, previously, the adversary could have
learned that the queries were not repeating, but as he already knows this information when using
constraints in CDB,k, there is no problem in leaking it.

7.4 Application to Database Padding with Best Possible Security

In this section, we will show how to pad the database in order to achieve Lα−padlen , as presented in
section 7.3.2. In particular, we want to create clusters of minimal size α, based on the number of
matches of every search query.

We want to solve this problem not only for static databases, but also for dynamic ones. Also,
we present here a black-box construction: we apply the countermeasure to scheme with Llen (resp.
L1RH ) leakage (leaking only the result length - resp. the result length and the search pattern)
without needing access to the inner machinery of the scheme, to turn them into Lα−padlen (resp.
L1α−padRH ) secure schemes. We only need the client to store a table with K entries, counting the
occurrence of every keyword (note that many dynamic SE schemes already needO(K ) – or similar
– permanent or transient storage [CJJ+14; SPS14; GMP16], Σoφoς , Diana, Janus, . . . ).

7.4.1 Using Frequencies Instead of Counts

To make our analysis easier and more general, we will work with keywords’ frequency instead
of exact result count. Namely, if the adversary knows the database (e.g. in a static setting), he
will easily derive the frequencies, while our approach also covers an adversary with distributional
knowledge of the database (typical in a dynamic setting without �le injection attack). Also, we
adopt a distributional approach, but, again in the case the adversary entirely knows the database,
we can replace the expectancies by the actual real values.

So, let DB be a distribution, with keywords in the set W . For DB← DB and w ∈W , we recall
that Nw = |DB(w)|, and N = |DB|. We note the expected frequency of w as ew:

ew := EDB←DB

[
Nw

N

]
.

Nw follows a multinomial law of N trials with event probability ew:∑
w∈W

Nw = N and Var(Nw) = New(1− ew)

By applying Chebyshev’s inequality to Nw, we have

P[|fw − ew| ≥ ε] ≤
ew(1− ew)

Nε2
. (7.1)

where fw := Nw
N is the real frequency of w in DB. In particular, Equation (7.1) tells us that the

observed frequency converges towards the expected frequency as the database grows, and an
adversary will be able to tell if a keyword w is a good candidate for a query matching n documents
from the distance between the observed frequency fw and the expected frequency ew for w.

As mentioned in Section 7.3.2, to thwart count-based/frequency-based attacks, we want to pad
the database so that, for every keyword w, there are at least α− 1 di�erent keywords with the same
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frequency in the database. Here, we are talking about the observed frequencies, i.e. the frequencies
after padding, the ones the scheme will leak to the adversary. Also, once we know that the expected
observed frequencies of di�erent keywords are identical, Equation (7.1) ensures that the actual
frequencies of these keywords will converge to the same value, and will be indistinguishable, forming
a cluster with these keywords.

7.4.2 How to Pad

In the following, we will denote the expected real (resp. observed) frequency of keyword w by erw
(resp. eow). The clusters will be formed by keywords with the same expected observed frequency:
Γ(eo) = (G1, . . . , Gm) such that ∃(ẽ1, . . . , ẽm) with Gi = {w|eow = ẽi}.

To achieve this, the client will pad the real keyword distribution by inserting fake entries (key-
word/document pairs) whose keyword is chosen according to a padding distribution, a multinomial
distribution of parameter epw. More formally, when answering a query on keyword w, the server
will see that it matches N o

w documents which can be decomposed as

N o
w = N r

w +Np
w (7.2)

where N r
w is the number of real documents matching w and Np

w is the number of fake entries used
for padding. Similarly, the total number of entries in the padded database, N o can be decomposed
as N r + Np, with N r being the number of real entries and Np the number of fake entries. As
previously, we can express eow, erw, and epw – the parameter of the padding distribution – as

eow = E
[
N o
w

N o

]
, erw = E

[
N r
w

N r

]
, and epw = E

[
Np
w

Np

]
.

We denote by γ the ratio of fake entries inserted in the database:

Np = γN r

By combining this with Equation (7.2), we end up with the following relationship among the expected
keyword frequency:

eow =
1

1 + γ
erw +

γ

1 + γ
epw ⇔ epw = (1 +

1

γ
)eow −

1

γ
erw. (7.3)

For each new real entry added to the database, the client, knowing the distribution of the database,
and with expected observed frequencies of his choice, will hence create, on average, γ padding
entries with keywords chosen according to a categorical law of parameter (epw)w∈W .

Also, it is extremely important to notice that, as epw must be comprised between 0 and 1, Equa-
tion (7.3) gives us a lower bound on γ:

γ ≥ max
w∈W

{
erw − eow
eow

,
erw − eow
eow − 1

}
. (7.4)

Hence, if the client does not want to add too many fake entries (to reduce the cost of padding), he
cannot choose any expected observed frequency distribution.
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Practical considerations on how to insert fake entries in the database. An important point
to notice about γ and the way we do padding is that the adversary must not be able to distinguish fake
entries from real ones when they are inserted. Otherwise, at least for structured encryption-based
searchable encryption, the adversary will be able to �lter between real and fake entries.

Also, if we suppose that the number of additional fake entries inserted per real entry is not
constant, the adversary could mark the updates with a low number of fake entries and restrict the
count-based attack to only these. This will help her to defeat the padding counter-measure more
easily as the observed keyword frequency for this reduced subset of entries will be closer to the real
frequency than for the entire database.

However, this does not prevent γ from being non-integral: for example to get γ = 1/3, instead
of inserting a fake entry one time out of two, we could cache updates, wait for three of them to
be available, and then send 4 entries (the three real ones and a fake one) to the server. Hence, in
practice, we will choose a rational value for γ.

7.4.3 Constructing Frequency-based Clusters

In the previous section, we showed how the client could pad the database once he chose a target
observed frequencies distribution that will form clusters. In this section, we will see how to construct
this distribution in a way that minimizes γ, given the minimum cluster size α.

Formally, by the end of this section, we would have described an algorithm that, on input a real
keyword distribution (erw) and a parameter α, outputs an expected observed keyword frequency
distribution (eow) such that the clustering Γ(eo) has clusters of size at least α, and that the padding
cost γ is minimized. This algorithm will run in time Θ((K − α)α).

Cost metrics. γ can be seen as the cost of the countermeasure. It measures the additional server
storage induced by the padding. However, one could consider instead other cost metrics, such as
the bandwidth overhead, or the computational overhead for search queries. Here, we only focus on
the storage cost γ.

Expected frequencies with minimal cost for a given clustering. Constructing the clustering
from the frequencies and optimizing the choice of these is not easy in practice because the process
of computing Γ(eo) from eo is highly discontinuous and it is hard to predict what will happen to
the sizes of clusters of Γ(eo) when e is changed.

On the other hand, it is easier to construct the expected frequencies from a reasonable clustering
choice. Namely, a frequency-based clustering Γ = (G1, . . . , Gm) and the associated expected
frequencies (ẽi) (cf. Section 7.4.2) have to satisfy the equations

m∑
i=1

|Gi| = K (7.5)

m∑
i=1

|Gi|ẽi = 1. (7.6)

Equation (7.6) comes from the fact that the frequencies eow must sum to 1, and is obtained by
regrouping keywords by cluster. Also, as we want to minimize the padding cost, we want γ to be as
small as possible, and the minimum value for γ is, from Equation (7.4)

γmin(Γ, ẽ) = max
w∈W

{
erw − eow
eow

,
erw − eow
eow − 1

}
= max

1≤i≤m

{
max
w∈Gi

{
erw − ẽi
ẽi

,
erw − ẽi
ẽi − 1

}}
(7.7)
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For a given frequency-based clustering Γ, we can �nd the expected observed frequencies (ẽi) of
keywords in each cluster minimizing the padding cost, as presented in Theorem 7.5.

Theorem 7.5. For a cluster Gi of Γ, we denote ermax(i) the maximum value of erw for w ∈ Gi. The
minimum value γmin(Γ) of γmin(Γ, ẽ) (over all possible cluster frequencies choices) is

γmin(Γ) = min
(ẽi)1≤i≤m

γmin(Γ, ẽ) =

(
m∑
i=1

|Gi|ermax(i)

)
− 1 (7.8)

and is attained for

(ẽi)1≤i≤m = (ẽ∗i )1≤i≤m =

(
ermax(i)

1 + γ

)
,

i.e. γmin(Γ, ẽ∗i ) = γmin(Γ).

Proof. Using the above notations, γmin(Γ, ẽ) can be re-written as

γmin(Γ, ẽ) = max
1≤i≤m

{
ermax(i)

ẽi
,
1− ermin(i)

1− ẽi

}
− 1. (7.9)

From this equation, we can easily derive a lower bound for γ: for each cluster, γi(Γ, ẽi) =

max
{
er
max(i)

ẽi
,

1−er
min(i)

1−ẽi

}
− 1 is minimum when

ermax(i)

ẽi
=

1− ermin(i)

1− ẽi
⇔ ẽi = ẽ∗i where ẽ∗i :=

ermax(i)

1 + ermax(i) − e
r
min(i)

.

and, as a consequence,

γmin(Γ, ẽ) ≥ γ0 = max
1≤i≤m

{
ermax(i) − e

r
min(i)

}
. (7.10)

A very important thing to notice is that, without loss of generality, we can suppose that either
ẽi ≥ ẽ∗i for all i, or ẽi ≤ ẽ∗i for all i, when the optimal cost is reached. Suppose this is not the case,
and that for the majority of the clusters ẽi ≥ ẽ∗i , and take j such that ẽj < ẽ∗j . Then, by decreasing
ẽi > ẽ∗i and increasing ẽj < ẽ∗j such that |Gi|ẽi + |Gj |ẽj remains constant, we will decrease both γi
and γj . Then if the maximum of γi’s is reached for cluster Gi, or Gj (or both), this contradicts the
cost minimality (the same argument holds when the optimal cost is reached for several clusters at
the same time).

Before going on, we have to prove an helpful technical lemma, and give the following de�nitions:

δ+
w = ermax(i) − e

r
w

∆ = max
w∈W

δ+
w .

Lemma 7.6. The following inequalities hold:

1 + ∆ ≤
m∑
i=1

|Gi|ermax(i) ≤ 1 + (K −m)∆ (7.11)
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Proof. By de�nition of δ+
w ,

m∑
i=1

∑
w∈Gi

erw =
m∑
i=1

∑
w∈Gi

(ermax(i) − δ
+
w )

⇔
m∑
i=1

|Gi|ermax(i) = 1 +
m∑
i=1

∑
w∈Gi

δ+
w

⇒ 1 + ∆ ≤
m∑
i=1

|Gi|ermax(i) ≤ 1 + (K −m)∆.

The K −m factor instead of K in the last inequality comes from the fact that in each cluster, there
is at least one keyword w such that δ+

w = 0.

From this lemma, we can show that
∑m

i=1 |Gi|ẽ∗i ≥ 1:
m∑
i=1

|Gi|ẽ∗i =
m∑
i=1

|Gi|
ermax(i)

1 + ∆i
≥

m∑
i=1

|Gi|
ermax(i)

1 + ∆
≥ 1

However, we are not guaranteed that
∑m

i=1 |Gi|ẽ∗i = 1, and we cannot conclude that the optimal
cost will be γmin.

Suppose
∑m

i=1 |Gi|ẽ∗i > 1 . We need to decrease some values ẽi to satisfy constraint (7.5). It is
‘free’ – it does not increase the overall cost – to do so for clusters such that γi < γmin, and for such
clusters the minimum value that ẽi can take is ẽlim

i such that

ermax(i)

ẽlim
i

= 1 + γmin ⇔ ẽlim
i =

ermax(i)

1 + γmin
=
ermax(i)

1 + ∆
.

Indeed as, ẽlim
i ≤ ẽ∗i ,

er
max(i)

ẽlimi
is larger than

1−er
min(i)

1−ẽlimi
.

Again, using Equation (7.11), we can show that
∑m

i=1 |Gi|ẽlim
i ≥ 1. Thus we will have to chose

ẽi < ẽlim
i for some clusters. Also, for the optimal expected frequencies (the ones inducing the

smallest cost), we will have γi = γ for all clusters: if this is not the case, and that there is a cluster
such that γj < γ, we can decrease ẽj (and thus increase γj) while increasing the other expected
frequencies (and thus decreasing γ). Hence, from the de�nition of γi, we have that

γ =
ermax(i)

ẽi
− 1⇔ ẽi =

ermax(i)

1 + γ

and as ẽ satis�es the constraint (7.6), we get
m∑
i=1

|Gi|
ermax(i)

1 + γ
= 1⇔ γ =

(
m∑
i=1

|Gi|ermax(i)

)
− 1. (7.12)

Theorem 7.5 directly gives us an algorithm, that, given a clustering Γ, �nds the keyword fre-
quencies minimizing the padding cost, together with this cost γmin(Γ). As a consequence, to �nd
the expected observed frequencies distribution that minimizes the padding cost, and that induces
clusters of size at least α, we only have to �nd the clustering of keywords inducing the minimum
cost and deriving the frequencies (ẽi).



168 Chapter 7 Leakage Abuse Attacks and How to Thwart Them

Finding a clustering with minimal cost. The last step is to design an algorithm that, given
expected real keyword frequencies (erw), and parameter α, constructs a clustering Γ with a minimum
cost γmin(Γ) with the constraint that every cluster has size at least α.

To simplify the problem, we can notice that, if Γ = (G1, . . . , Gm) reaches the minimum cost, and
that there are two clusters Gi and Gj such that ermax(i) = ermax(j), then we can ‘merge’ these two
clusters and construct a clustering with the same cost (from Equation (7.8)), whose clusters size is
larger than α. Hence, we can suppose that ermax(i) 6= ermax(j) for every pair of clusters.

Also, for such a clustering reaching the minimum cost, we can suppose that

∀Gi, Gj ∈ Γ, ermax(i) ≤ e
r
min(j) or ermin(i) ≥ e

r
max(j). (7.13)

An equivalent (but more verbose) de�nition would be

∀Gi, Gj ∈ Γ, (∀w ∈ Gi, w
′ ∈ Gj , e

r
w ≤ erw′) or (∀w ∈ Gi, w

′ ∈ Gj , e
r
w ≥ erw′),

justifying that we call such clusterings monotone. We can easily show the following proposition.

Proposition 7.7. Let Γ be a non-monotone clustering with clusters of size at least α. Then there exists
a clustering Γ′ with clusters of size at least α, γmin(Γ) ≥ γmin(Γ′) and Γ′ is monotone.

Proof. As Γ is not monotone, there are two clusters Ci and Cj such that ermax(i) > ermax(j) > ermin(i).
Let w ∈ Ci (resp. w′ ∈ Cj) such that erw = ermin(i) (resp. erw′ = ermax(j)), and Γ′ be the clustering
obtained by exchanging w and w′ in Ci and Cj . If there is only one w′ ∈ Cj reaching the maximum,
The maximum expected frequency of the new cluster C ′j will decrease or stay identical if there is
more than one w′ ∈ Cj reaching the maximum, while the e′rmax(i) will not change. As a consequence,
γ(Γ) ≥ γ(Γ′).

We can iterate this algorithm until Ci and Cj satisfy the monotonicity condition, i.e. with
ermax(j) ≤ e

r
min(i). Finally, by repeating this procedure over pairs of clusters, as in a sorting algorithm,

we end up constructing a monotone clustering whose cost is less than the original one, while its
min-quality remains unchanged (because the size of the clusters did not change).

We now have to simple constraints on the clustering we want to construct: �rst its clusters are of
size at least α, then the clustering should be monotone. Also, it will be handy in the following to
suppose that the keywords are numbered such that their expected frequencies are non increasing:
for i < j, erwi ≤ erwj . Constructing such a clustering is equivalent to �xing m′ = m − 1 cluster
limits `0 = 0 < `1 < · · · < `m < K = `m+1 such that

∀1 ≤ i ≤ m+ 1, `i − `i−1 ≤ α.

and the associated clustering is Γ` = (G1, . . . , Gm) with Gi = {wj |`i−1 < j ≤ `i}.
We could try to enumerate all these clusterings to �nd the clustering with minimum cost. However,

the number of such clusterings is lower bounded by the number of partitions p(K) of K (there is a
surjective mapping between these clusterings and the values taken by `i − `i−1), and p(K) grows
extremely fast as, from Hardy and Ramanujan [HR18],

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

Instead, we can reduce the problem of �nding the optimal clustering to the problem of �nding a
shortest path in an directed acyclic graph (DAG) ofK+1 vertices and (K−α)(K−α+1)

2 edges. Finding
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a solution to this problem can be done very e�ciently, in in time complexity Θ
(
(K − α)2

)
and

memory complexity Θ(K ) [CLRS09].
To do the reduction, we consider the graphGα(W ) = (V,E) with vertices V and edgesE de�ned

as follows:

V = {0, . . . ,K}
E = {(i, j) ∈ V 2 | j − i ≥ α}.

The weight c(i, j) of the edge (i, j) ∈ E is de�ned as

c(i, j) := (j − i)erwi .

We can see that there is a mapping between path of Gα(W ) from node 0 to node K and monotone
clusterings of minimal cluster size larger α: for such a clustering, with cluster limits 0 = `0 < `1 <
· · · < `m−1 < `m = K , we consider the path PΓ = (`0, . . . , `m). This path goes from 0 to K and
two consecutive nodes in this path have a di�erence of at least α, as its edges are all in E. Also, the
weight of PΓ is exactly γmin(Γ) + 1 following from the de�nition of the edges’ weight and from
Equation (7.8):

γmin(Γ) + 1 =
m∑
i=1

|Gi|ermax(i) =
m∑
i=1

|`i − `i−1|erw`i = c(PΓ).

So, minimizing the clustering cost is equivalent to �nding a shortest path inGα(W ), which is clearly
a DAG with K + 1 vertices and (K − α)(K − α+ 1)/2 edges.

We can reduce also the number of edges to consider in the graph to |E| ≤ (K − α)α, reducing
the computational complexity of the clustering algorithm to Θ((K − α)α) — the algorithm is now
linear in K .

Reducing the complexity of the clustering graph. We can reduce the number of edges to
consider in the graph to |E| ≤ (K − α)α, reducing the computational complexity of the clustering
algorithm to Θ((K − α)α) — the algorithm is now linear in K .

Suppose that Γ be a clustering with minimum cost, whose clusters are larger than α, and such
that no cluster contains more than 2α keywords. We can construct a clustering Γ′ by splitting a
cluster of size larger than 2α in two clusters each of size larger than α. Γ′ will have a cost less than
Γ (because the maximum expected frequency of the newly obtained cluster will be less than the one
of the old split cluster). Without loss of generality, we can suppose that minimal cost clusterings
have no cluster with more than 2α elements.

This implies that we can reduce the set of edges of G to

E = {(i, j) ∈ V 2 | j − i ≥ α and j − i < α}.

The number of edges is then |E| = (K− 2α)α+ α(α−1)
2 (α incoming edges for all nodes, except the

�rst α ones – no incoming edge – and the nodes i ∈ [α, 2α− 1] which have i− α incoming edges).
Finally, note that as described higher, the graph G is already topologically sorted. Hence, �nding

the shortest path in G can be very easily done using dynamic programming.
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7.4.4 Integration to Existing Schemes

The padding algorithm described in the previous sections ensures that, for a given input parameter
α, there are clusters, each of size at least α, of keywords with the same (adversarially observed)
frequency. This algorithm can be integrated to any SE scheme very simply: the client, during the
setup phase, as he knows the upcoming database distribution, is able to compute the clustering and
the padding keyword distribution. As explained in Section 7.4.2, we can suppose that γ is a rational
number γ = p/q. Hence, the client will keep a bu�er of q entries to be pushed to the server.

When a new entry has to be inserted, the client inserts it in the bu�er. If the bu�er is full, he
creates p fake entries by sampling p random keywords according to the padding distribution and
chooses special document indices marking that these entries are fake. Finally, he pushes the q real
and p fake entries to the server, without forgetting to randomly permute them beforehand.

This construction can directly be applied to searchable encryption schemes like Π
dyn
bas [CJJ+14],

SPS [SPS14], TWORAM [GMP16], Σoφoς (Section 4.5), Diana (Section 4.6), and many others to
transform them into schemes that are provably secure against adversaries with knowledge of the
database, as a corollary of Section 7.3.2.

Corollary 7.8. Let CDBk the set of database-�xing constraints (cf. Section 7.2.3) with k search queries.
Used with the padding algorithm with parameter α, TWORAM is (Lα−padlen ,CDBk , αk)-constrained-
adaptive-indistinguishability secure.

Corollary 7.9. Used with the padding algorithm with parameter α, Π
dyn
bas , SPS, Σoφoς , Diana in a

result-hiding scenario, are (L1α−padRH ,CDB, α)-constrained-adaptive-indistinguishability secure.

7.5 Experiments

We implemented the frequency-based clustering algorithm. This allowed us to study the in�uence
of the parameter α on the cost of the clustering, the computational overhead of the padding (the
computation of the clustering and of the padding distribution. Finally, our experiments show that the
count attack of Cash et al. is a lot more powerful than originally assessed in their paper [CGPR15].
In particular, when the adversary knows the database, leaking the keywords co-occurrence is
devastating.

7.5.1 The Performance of the Clustering Algorithm

We implemented the clustering algorithm in Java and ran it on the Enron dataset [Enron] for di�erent
values of α, in order to see the relation between α and γ. The obtained results are summarized in
Figure 7.4. We can see that the cost grows roughly as the minimum cluster size, although we can
see some discontinuities. These singularities appear when the number of clusters of the optimal
clustering changes. Namely, in the experiment with 5000 keywords, the algorithm with α = 1666
generates 3 clusters, while for α = 1667, it only generates 2.

As we would expect, for a given database, the cost of the clustering decreases as the number of
indexed keywords increases: the clustering algorithm has more choices to construct clusters and
hence will optimize this choice more easily.

Also, the clustering algorithm itself is quite fast: for 20 000 keywords and α ≈ 4750, the algorithm
runs in about 170 ms using a quite naive dynamic programming implementation, on an Intel 4980HQ
CPU running at 2.80 GHz. In comparison, Σoφoς takes around 1.69 ms per insertion, and if we
suppose that every document contains more than 100 keywords, we can recompute a clustering every
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Figure 7.4 – Storage overhead γ due to the database padding depending on α.

10 (or 100) inserted documents without reducing noticeably the update throughput and prevent
unnoticed changes in the database distribution. For dynamic schemes with higher throughput (e.g.
Π

dyn
bas [CJJ+14], or Diana), this can be done every 1000 new document insertion to avoid hindering

the update throughput.

7.5.2 In�uence of Secure Padding on the Count Attack

As an experiment, we also run the count attack of Cash et al. against schemes with complete L1
leakage – in particular co-occurrence leakage, not only L1RH – to which we applied our padding
algorithm. Remember that our frequency-based clustering provably protects schemes with L1RH
leakage. This experiment can be seen as a way to understand what actually is the security loss due
to the co-occurrence information.

We executed the count attack on the Enron email database once padded with our algorithm,
with di�erent values for α. Experimental results are stated in Table 7.1. For the experiments, we
measured the elapsed CPU time: as the count attack is massively parallelizable, the wall clock time
is not a good measurement, and the CPU time is representative of the actual cost for the attacker.
We ran the attack using several randomness seeds, and we give both the average and the minimum
running time over the choice of seeds. We also compared the attack running time in presence of two
di�erent padding strategies: our frequency-based clustering technique and the technique described
in [CGPR15], namely the number of entries matching a keyword is padded up to the nearest multiple
of an integer n, the padding factor.

The �rst thing to notice is that we always were able to recover (almost) all the queries. The
original [CGPR15] paper showed partial reconstruction rate due to a small bug in their original code
(premature exit of a loop exhausting the possible candidates for a guessed keyword). The count
attack is much more powerful than originally stated in the original paper.

Yet, we can clearly see that the padding strategy in�uences quite a lot the performance of the
count attack. We interpret that as a consequence of the way the count attack works. When there
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Table 7.1 – Experimental running time of the count attack with two types of padding. Min and
average are taken over at least 20 runs. The Enron email dataset [Enron] was used for
this experiment, with 5000 keywords and 500 queried keywords. n is the padding factor
of the padding technique of [CGPR15].

Clustering Runtime
blowup

Up to Multiple

α
Runtime (h) Runtime (h)

nMin Avg. Min Avg. Min Avg.

210 0.143 0.876 1.37 × 3.61 × 0.105 0.243 100
440 2.15 65.2 5.63 × 22.5 × 0.382 2.90 200
710 16.5 1169 13.8 × 25.6 × 1.19 22.5 300
960 104 5040 25.1 × 17.3 × 4.17 292 400

are keywords with unique result count, the attacker is able to recover queries on these keywords
and then uses this initial information to recover the other queries by comparing the number co-
occurrence between a known and an unknown keyword on one side, and the known co-occurrence
information he has from the knowledge of the dataset on the other side. For a still encrypted query
q, the adversary will enumerate the candidate keywords matching the same number of documents
and reject keywords with incompatible co-occurrence frequency with already recovered queries.

When this is not the case, the attacker cannot leverage the fact that he already recovered queries
to compare the co-occurrence. So, instead he guesses the keyword corresponding to the target query
among the α and tries to proceed with the query recovery using this guess.
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Figure 7.5 – Running time of the count attack in presence of padding, depending on α, in log-log
scale.
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So, in the latter case, we have that the count attack runtime should scale quadratically with α. In
practice, using a linear regression, we can see in Figure 7.5 that the attack scales more like α5.5 in
average, but we do not explain this discrepancy. In any case, we cannot rely on a su�ciently large
value of α to be out of reach of the count attack against the L1 leakage. Just padding the database
to have many keywords with the frequency, as the algorithm described in this paper does, cannot
result in reasonable level of security, and there is a clear security gap between schemes leaking only
the result length (Llen leakage) and the one also leaking the keywords co-occurrence (L1 leakage).
We need a di�erent approach to protect these schemes.

One is sketched by Islam et al. [IKK12, Sections 10-12] who introduced these co-occurrence
attacks, and is, in spirit, similar to our clustering idea. Their idea is to pad the database so that there
is a partition of the keyword set for which in each set, every keyword matches the same documents,
and each set is at least of size α. Unfortunately, their experiments show that the overhead due to this
countermeasure is very high (γ ≈ 2 for α = 2, and γ ≈ 4 for α = 3). Also, doing this in a dynamic
setting would require up to O

(
K2
)

storage on the client side (in order to store the co-occurrence
matrix), which would not scale for large databases.

Finally, we can see the attacks based on co-occurrence as an order 2 version of the frequency-based
attack: instead of counting the number of total occurrence of a single-keyword w in the database,
the adversary counts the number of occurrences of pairs (w1, w2). Thus we can imagine higher
order attacks using the co-occurrence information of 3 (or more) keywords in the same document.
Provably thwarting this kind of attacks would be very costly in general, and we believe that we
should actually rely on actual attack performance to evaluate the security of result-revealing SE
schemes.

References

[BF17] Raphael Bost and Pierre-Alain Fouque. Thwarting Leakage Abuse Attacks against
Searchable Encryption – A Formal Approach and Applications to Database Padding.
Cryptology ePrint Archive, Report 2017/1060. http://eprint.iacr.org/
2017/1060. 2017 (cit. on pp. x, 13, 151).

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: improved de�nitions and e�cient constructions. In: ACM CCS 06.
Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati. ACM Press,
Oct. 2006, pp. 79–88 (cit. on pp. 9, 42–45, 56, 72, 152).

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In: ACM CCS 15. Ed. by Indrajit Ray, Ninghui Li, and
Christopher Kruegel: ACM Press, Oct. 2015, pp. 668–679 (cit. on pp. 60, 66, 151–153,
156, 161, 162, 170–172).

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic Searchable Encryption in Very-
Large Databases: Data Structures and Implementation. In: NDSS 2014. The Internet
Society, Feb. 2014 (cit. on pp. 10, 49, 56, 73, 83, 99, 129, 163, 170, 171).

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. Intro-
duction to Algorithms, Third Edition. 3rd. The MIT Press, 2009. isbn: 9780262033848
(cit. on p. 169).

[Enron] Enron Corporation. Enron email dataset. Link. (Cit. on pp. 170, 172).

http://eprint.iacr.org/2017/1060
http://eprint.iacr.org/2017/1060
https://www.cs.cmu.edu/~./enron/


174 References

[GMP16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: E�-
cient Oblivious RAM in Two Rounds with Applications to Searchable Encryption. In:
CRYPTO 2016, Part III. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9816. LNCS.
Springer, Heidelberg, Aug. 2016, pp. 563–592 (cit. on pp. 7, 8, 45, 69, 73, 99, 101, 161,
163, 170).

[HR18] Godfrey H. Hardy and Srinivasa Ramanujan. “Asymptotic formulæ in combinatory
analysis”. In: Proceedings of the London Mathematical Society 2.1 (1918), pp. 75–115
(cit. on p. 168).

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access Pattern
disclosure on Searchable Encryption: Rami�cation, Attack and Mitigation. In: NDSS 2012.
The Internet Society, Feb. 2012 (cit. on pp. 59, 60, 151, 152, 173).

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic Attacks
on Secure Outsourced Databases. In: ACM CCS 16. Ed. by Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi. ACM Press,
Oct. 2016, pp. 1329–1340 (cit. on pp. 151–153, 160).

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: 38th FOCS. IEEE Computer Society
Press, Oct. 1997, pp. 364–373 (cit. on pp. 6, 153).

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical Dynamic Search-
able Encryption with Small Leakage. In: NDSS 2014. The Internet Society, Feb. 2014
(cit. on pp. viii–x, 10, 13, 45, 59, 67, 71, 73, 81, 97–99, 115, 119, 122, 130–133, 141, 147,
163, 170).

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All Your Queries Are
Belong to Us: The Power of File-Injection Attacks on Searchable Encryption. In: 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
2016, pp. 707–720 (cit. on pp. 10, 12, 60, 66, 76, 114, 152, 153, 156, 157).





A conclusion is the place where you get
tired of thinking.
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Conclusion 8
T

his thesis presented new results and new constructions of searchable encryption. This
very last chapter summarizes the results presented previously, and tries to open new research
directions to look at.

8.1 Summary of the Results

In this thesis, we presented the concepts and goals of searchable encryption, as well as constructions
achieving several security/performance/features tradeo�s.

After having shown that, even for static schemes, security comes at an unavoidable cost in
Theorem 3.2, we introduced two security features: forward privacy (Chapter 4) and backward
privacy (Chapter 5), the former protecting the con�dentiality of the updates, and the latter the
secrecy of deleted entries.

In Theorem 4.1, we showed that forward privacy had a cost, either in terms of client storage or of
update e�ciency. We then studied three ways to construct forward-private schemes, either from
static SSE schemes (Section 4.4), using a trapdoor permutation (Σoφoς — Section 4.5), or with a
range-constrained pseudorandom function (Diana — Section 4.6). Each of these construction has its
interest: generic construction from static SSE allows for improved locality or improved asymptotic
complexity of the search protocol in presence of deletions, while Σoφoς is an optimally e�cient
scheme and Diana has the best practical e�ciency. We presented the implementation of Σoφoς and
Diana, and showed the practicality of these schemes.

In Chapter 5, we studied thoroughly backward privacy, by �rst giving formal security de�nitions,
and then proposing 4 schemes, Fides, Moneta, Dianadel and Janus, achieving several �avors of
backward privacy, and several performance tradeo�s, Moneta being the most secure, but impractical,
Fides being the simplest scheme, but with high communication overhead, Dianadel being more
e�cient than Fides, but also needing a lot of communication, and Janus only needing a single round-
trip and achieving optimal asymptotic communication complexity, but with a big computational
overhead. In particular, we demonstrated that the practical e�ciency of Janus would prevent it
from performing well on real world databases.

We also studied veri�able SSE in Chapter 6, where, after showing a logarithmic lower bound
on the e�ciency of such constructions (Theorem 6.2), we described the �rst optimal dynamic SSE
scheme (Section 6.3) using veri�able hash tables and incremental set hashing functions. We also
showed how to easily turn Σoφoς , Diana and Janus into veri�able schemes, by making the client
locally store an (incremental) hash of the result set. We ended that chapter by �xing the SPS scheme,
and making it veri�able with a very low overhead compared to the non-veri�ed version.

Finally, in Chapter 7, we tried to understand the leakage abuse attacks and presented new
de�nitions capturing these attacks. We developed a framework, that we hope will be useful to devise
new counter-measures, but also to �nd new attacks. In particular, we constructed a padding scheme
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provably preventing attacks using the frequency of keywords to break the queries’ secrecy.

8.2 Open Problems

Even though some interrogations about searchable encryption were answered by the previously
presented results, many very interesting questions remain open, or were even raised by those results.
We will try here to give a glimpse on some of these problems.

Lower bound on the locality of forward private schemes. In Section 4.3.2, we explained why
it looks hard to construct a forward private scheme that has both good locality, and low search
or update overhead. We saw how to actually construct forward private scheme with O (logN )
locality, O(logN log logN ) read e�ciency, O(logN ) search complexity and O

(
log2N

)
update

complexity (cf. Section 4.4).
Yet, it would be very interesting to exhibit a lower bound on the locality of such forward private

constructions, possibly derived from the lower bound on ORAM locality of [ACN+17].

Better support of deletions. In Chapter 5, we studied several constructions of dynamic SSE
supporting deletions in a secure way. However, we did not solve the e�ciency problems of SSE
supporting deletions. Although it is easy to construct such schemes, having a good level of security
for these is not easy: the most e�cient forward private deletion-able scheme is SPS, whose search
complexity can depend only on the number of actual matches of a keyword, instead of depending
on the number of historically added documents matching this keyword. Also, it would be nice to
construct a forward private scheme e�ciently supporting the deletion of an entire document at
once, without having to delete the corresponding keyword/document pairs one by one.

The case of backward-private schemes is even worse: Fides, Dianadel and Janus present several
tradeo�s between security and e�ciency. For example, Janus search complexity, O (nw · dw ),
is worse (both in theory and in practice) than Dianadel’s O (aw ), but Janus only needs a single
round-trip for the execution of the search protocol while Dianadel requires two, and has a larger
communication overhead (cf. Table 5.1).

This leads to the question of the existence of a lower bound on the search/update e�ciency of a
backward-private scheme. Indeed, we believe that the asymptotic e�ciency of Janus is optimal for
single round-trips schemes, but the formalization of the lower bound has to be quite complex as
Dianadel shows that, when more than one round-trip is allowed, one can do better than Janus.

Counter measure against �le injections. In Section 7.4, we showed how to counter attacks
based on keywords frequency. Unfortunately, this is far from being enough against active adversaries,
able to insert forged documents in the database in order to break the con�dentiality of the queries,
i.e. able to mount �le injection attacks. We saw in Chapter 4 how to thwart the adaptive versions of
these attacks, which are often devastating. However, we did not solve the problem of non-adaptive
�le injection attacks.

These attacks, as mentioned in Section 7.2.3, can be studied under the framework of Chapter 7,
so as to devise new counter measures. In particular, it seems that some kind of adaptive padding,
that tries to hide when entries corresponding to a newly inserted document are actually pushed
to the server, is absolutely necessary. Understanding how to implement this adaptive padding,
and assessing its actual e�ciency against an attacker looks to be a very interesting, yet very hard
problem.
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Use of secure hardware. It would also be interesting to study how to use secure hardware or
secure enclaves, such as Intel SGX [Int17], to improve the performance of the SSE schemes. Indeed,
the secure enclave could perform exactly the same operations than the client, but physically on the
server, reducing the cost of interactions due to high latency between the (real) client and the server.

However, this would require a lot of con�dence in the implementation of the protocols in the
secure enclave (the server could use some side channels, and learn information that would have been
hidden if the computations were run on the client), and even some con�dence in the enclave itself.
Instead, we could imagine a three-party model, as in [BO15], were the secure hardware is there to
help the server to run some computation, using a client-issued key to decrypt useful information,
but cannot learn everything about the results, using this key: the enclave and the server would have
to collude to break the security to the scheme.

More generally, we could try to design schemes using such secure enclaves, and whose security
is not completely lost when the enclave is itself broken. One example would be the use of secure
attestations for veri�able SSE: the enclave would not have to store any secret to prove the integrity
of the results of a search query.
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Résumé
La recherche sur les bases de données chi�rées vise à rendre e�cace une tâche apparem-

ment simple : déléguer le stockage de données à un serveur qui ne serait pas de con�ance,
tout en conservant des fonctionnalités de recherche. Avec le développement des services
de stockage dans le Cloud, destinés aussi bien aux entreprises qu’aux individus, la mise au
point de solutions e�caces à ce problème est essentielle pour permettre leur déploiement
à large échelle. Le principal problème de la recherche sur bases de données chi�rées est
qu’un schéma avec une sécurité parfaite implique un surcoût en termes de calcul et de
communication qui serait inacceptable pour des fournisseurs de services sur le Cloud ou
pour les utilisateurs — tout du moins avec les technologies actuelles.

Cette thèse propose et étudie de nouvelles notions de sécurité et de nouvelles construc-
tions de bases de données chi�rées permettant des recherches e�caces et sûres. En parti-
culier, nous considérons la con�dentialité persistante et la con�dentialité future de ces
bases de données, ce que ces notions impliquent en termes de sécurité et d’e�cacité, et
comment les réaliser. Ensuite, nous montrons comment protéger les utilisateurs de bases
de données chi�rées contre des attaques actives de la part du serveur hébergeant la base,
et que ces protections ont un coût inévitable. En�n, nous étudions les attaques existantes
contre ces bases de données chi�rées et comment les éviter.

Abstract

Searchable encryption aims at making e�cient a seemingly easy task: outsourcing
the storage of a database to an untrusted server, while keeping search features. With
the development of Cloud storage services, for both private individuals and businesses,
e�ciency of searchable encryption became crucial: ine�cient constructions would not
be deployed on a large scale because they would not be usable. The key problem with
searchable encryption is that any construction achieving ‘perfect security’ induces a
computational or a communication overhead that is unacceptable for the providers or for
the users — at least with current techniques and by today’s standards.

This thesis proposes and studies new security notions and new constructions of search-
able encryption, aiming improving e�ciency and security. In particular, we start by
considering the forward and backward privacy of searchable encryption schemes, what it
implies in terms of security and e�ciency, and how we can realize them. Then, we show
how to protect an encrypted database user against active attacks by the Cloud provider,
and that such protections have an inherent e�ciency cost. Finally, we take a look at
existing attacks against searchable encryption, and explain how we might thwart them.


	Remerciements
	Résumé en français
	Chiffrement de base de données
	Pourquoi chiffrer des bases de données ?
	Problématique du chiffrement des bases de données

	Travaux sur les algorithmes de recherche sur bases de données chiffrées
	Confidentialité persistante des algorithmes de recherche sur bases de données chiffrées
	Confidentialité future des algorithmes de recherche sur bases de données chiffrées
	Algorithmes vérifiables de recherche
	Attaques par abus de fuite

	Autres travaux
	Classification de données chiffrés par un algorithme d'apprentissage
	Attaque sur le mode de chiffrement authentifié OTR


	Table of Contents
	Introduction
	The Need for Encrypted Databases
	History of Searchable Encryption
	Encrypted Databases from Generic Tools
	Single-keyword Searchable Encryption
	Encrypted Databases Supporting Complex Queries

	Contributions of this Thesis
	Sophos: Forward Secure Searchable Encryption
	Forward and Backward Private Searchable Encryption from Constrained Cryptographic Primitives
	Verifiable Dynamic Symmetric Searchable Encryption: Optimality and Forward Security
	Thwarting Leakage Abuse Attacks against Searchable Encryption – A Formal Approach and Applications to Database Padding
	Original Contributions


	Notation, Definitions and Preliminaries
	Mathematical Notations
	Cryptographic Preliminaries
	Cryptographic Tools
	Hardness Assumptions

	Cryptographic Primitives
	Pseudorandom Function
	Constrained Pseudorandom Function
	Pseudorandom Permutation
	Trapdoor Permutation
	Hash Function
	Semantically Secure Encryption
	Message Authentication Code
	Authenticated Encryption with Associated Data


	Basics of Searchable Encryption
	Definitions
	Formalism of Symmetric Searchable Encryption
	Correctness
	Confidentiality
	Leakage Function
	Honest-but-curious Adversaries
	Malicious Adversaries

	Soundness

	Leakage in Searchable Encryption
	An Order Relation over Leakage Functions
	Commonly Encountered Leakage
	Efficiency Implies Leakage

	The Locality of Searchable Encryption
	Locality, Read Efficiency and Overlapping Reads
	A Lower Bound on the Locality of Searchable Encryption
	Constructions with Improved Locality

	Leakage Abuse Attacks
	Attacks Based on Keyword Frequency
	File Injection Attacks


	Forward Privacy
	File Injection Attacks
	Definition of Forward Privacy
	Constraints Induced by the Forward Privacy
	Constraints on Storage
	Constraints on Locality
	Constraints on Efficiency

	Building a Forward Private SSE Scheme from Static Schemes
	Sophos: Simple Optimal Forward Secure Searchable Encryption
	General Ideas
	Basic Construction
	Security
	Derived Constructions
	Reducing Client-side Storage
	Comparison with Other Constructions
	Outsourcing the Client's State

	Diana: Forward-Secure SSE with Very Low Overhead
	FS-RCPRF: Forward-Secure SSE from Range Constrained PRFs
	Diana, a GGM Instantiation of FS-RCPRF

	Implementation and Evaluation of Sophos and Diana
	Implementation Details
	Experimental Setting
	Results and Interpretation


	Backward Privacy
	Definition of Backward Privacy
	A Generic Two Round-trips Backward-Private Scheme
	Fides: A Baseline Forward and Backward Private SSE Scheme
	Moneta: An (Almost) Strongly Backward Private Scheme

	Diana-del: Backward Privacy from Range-Constrained and Puncturable PRFs
	Janus: Weak Backward Privacy from Puncturable Encryption
	Puncturable Encryption
	Incremental Puncture
	The Janus Construction
	Reducing the Storage Overhead
	Security of Janus Against Weaker Adversaries
	Performance of Janus


	Verifiable Searchable Encryption
	A Lower Bound on Verifiable Searchable Encryption
	Memory Checking
	A General Lower Bound on Verifiable SSE
	Lower Bound for Practical Constructions

	Tools for Constructing Verifiable Dynamic SSE schemes
	Verifiable Hash Tables
	Static Verifiable Hash Tables
	Incremental Hashing

	A Generic and Optimal Construction
	Verifying Sophos, Diana, and Janus
	Verifying SPS
	Remembering SPS
	Quick Cryptanalysis of SPS
	Verifiable SPS: Basic Construction
	Sublinear Construction
	Soundness proof of Verif-SPS
	Reduction
	Soundness of G3

	Complexity
	Complexity of the basic scheme
	Complexity of the Sublinear Scheme



	Leakage Abuse Attacks and How to Thwart Them
	Leakage Abuse Attacks and their Origin
	Fixing the Security Definition
	Constraints
	Constrained Security
	Examples of Constraints
	Devising New Leakage Abuse Attacks Using Constraints
	Extending the Security Definition
	Extension to More Than Two Histories
	Extension to Distributional Knowledge


	Keywords Clustering
	Regrouping Keywords with Equal Leakage
	Applications to Common Leakage Profiles and Constraints

	Application to Database Padding with Best Possible Security
	Using Frequencies Instead of Counts
	How to Pad
	Constructing Frequency-based Clusters
	Integration to Existing Schemes

	Experiments
	The Performance of the Clustering Algorithm
	Influence of Secure Padding on the Count Attack


	Conclusion
	Summary of the Results
	Open Problems

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

