
R. Bost - 21/04/2021

A Quick Intro to Searchable
Encryption
Theory & Practice - Constructions & Attacks

?

Searchable Encryption

Outsource data

• Securely

• Keep search functionalities

• Aimed at efficiency

• … we have to leak some information …

• … and this can lead to devastating attacks

• We want to protect both data & queries from the
server

- Query only: PIR

- Data only: does not really make sense

- In practice, the docs are stored separately from
the index, and the index is ‘encrypted’

• Example of leakage vs efficiency: keyword frequency

- Padding or O(N) comp./comm.

Searchable Encryption

Many results ⇒ frequent kw

Few results ⇒ rare kw

Distinguishing those
queries is easy

Property Preserving Encryption

Deterministic encryption, Order Preserving Encryption

✓ Legacy compatible (works on top of unencrypted DB)

✓ Very efficient

✗ Not secure in practice (frequency analysis)

FHE & ORAM

Fully Homomorphic Encryption

✓Support arbitrary queries

✓Fully secure

✗ Not efficient at all

Oblivious RAM

✓Support arbitrary queries

✓Reveals the results count

✗ Large communication overhead

Make compromise!

Effi
ci

en
cy

Security

The Nope Zone

Efficient but insecure

Secure but inefficient

Secure & efficient
The Grail

Plaintext

Property Preserving
Enc.

ORAM
FHE

Can we get here?

w D2D1 D3 D4 D5 D6Kw

Client

Server

w’ Kw’

Client

Server

D’2D’1 D’3 D’4 D’5

w Kw

Client

Server

D2 D1 D3 D4D5D6

Same query ⟹ same accesses

Repetition of queries leaks

Lower bounds

• Oblivious RAM lower bound: if one wants to hide the access pattern to a memory of size N,
the computational overhead is  

 

• A similar lower bound exists for searchable encryption: a search pattern-hiding SE incurs a
search overhead of

Ω (log N
log σ)

Ω
log (|DB |

nw)
log σ

Effi
ci

en
cy

Security

The Nope Zone

Efficient but insecure

Secure but inefficient

Secure & efficient
The Grail

Plaintext

Property Preserving
Enc.

ORAM
FHE

Effi
ci

en
cy

Security

The Nope Zone

Efficient but insecure

Secure but
inefficient

Secure &
efficient
The Grail

Plaintext

Property Preserving
Enc.

ORAM
FHE

U
nr

ea
ch

ab
le

D2 D6 D1 D3 D5 D4

w Kw

Client

Server

D7

Kw
I know that w was

updated !

D7

File injection attacks [ZKP’16]

• Insert purposely crafted documents in the DB 
(e.g. spam for encrypted emails)

log |W| injected documents

D1 w1 w2 w3 w4 w5 w6 w7 w8

D2 w1 w2 w3 w4 w5 w6 w7 w8

D3 w1 w2 w3 w4 w5 w6 w7 w8

K

Active adaptive attacks

• These adaptive attacks use the update leakage

• We need SE schemes with oblivious updates

• Good news: we know how to do it at a small cost (see Σoφoς or Diana)

⚠ but there is also a lower bound on the efficiency of such schemes

Forward Privacy

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Can we get here?

Practical Efficiency

• We mostly focused on the asymptotical complexity (comp. & comm.), but this
is not enough.

• On hard drives, locality of accesses is important.

D2 D6 D1 D3 D5 D4

nw random accesses

D1 D2 D3 D4 D5 D6

Simple SSE

Cleartext DB

One (random) access

Practical Efficiency
Locality
• Making many accesses is very costly 
 
 
 
 
 
 

• It is worth reading more than necessary to avoid some accesses: reading
once O(log N) bytes is better than reading O(log log N) times O(1) bytes.

• No free lunch ☹ : 
[CT’14] Constant locality & constant read efficiency implies ⍵(N) storage.

Action Latency
4kB read (HDD) 6 ms
RSA SK Operation 1 ms
RSA PK Operation 0.05 ms
ECC exponentiation 0.2 ms
PRF Evaluation 300 ns

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Practical Efficiency
SSDs
• Cool guys use flash memory now! 

 
 
 
 
 
 
 

• SSDs are not local at all! There is built-in parallelism.

• Locality is no longer the right metric. Focus on the # of read pages.

• The previous lower bound no longer applies 😀

Action Latency
4kB read (SSD) 0.1 ms
RSA SK Operation 1 ms
RSA PK Operation 0.05 ms
ECC exponentiation 0.2 ms
PRF Evaluation 300 ns

Action Latency
4kB read (HDD) 6 ms
RSA SK Operation 1 ms
RSA PK Operation 0.05 ms
ECC exponentiation 0.2 ms
PRF Evaluation 300 ns

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Effi
ci

en
cy

Security

Plaintext

Property Preserving
Enc.

ORAM
FHE

Simple SE Diana

Under submission 
 
Throughput half a raw read
of the results (on a SSD)

Recipe:

- mix a systems-oriented

approach, …

- a pinch of cryptography, …

- a lot of algorithmic, …

- a spoon of statistics, …

- shake everything, …

- and implement the result in

your favorite language 
(C/C++/Rust)

Conclusion

• It is hard (sometimes impossible) to combine efficiency, features and security

• A lot of improvements have been made in the knowledge of SE:

• Better security models and constructions

• Better understanding of attacks

• Practical implementations

• What about a large scale adoption?

Conclusion
What about a large scale adoption?

• Probably still too inefficient for large scale databases (think TB)

• Not suited for complex queries yet (think SQL)

• Maybe we are asking for too much security? 🤔

• Basic database encryption would higher the cost of database theft (memory
dumps are hard) and prevent 90% of today’s leaks

0% of leaked
databases were

encrypted
Questions?

Slides: https://raphael.bost.fyi/publications/ 
Code: https://github.com/opensse/

https://raphael.bost.fyi/publications/

