A Quick Intro to Searchable
Encryption

R. Bost - 21/04/2021

Searchable Encryption

Outsource data

o Keep functionalities
e Aimed at
e ... wWe haveto some information ...

e ... and this can lead to devastating

Searchable Encryption

 \We want to protect both data & queries from the
server

- Query only: PIR
- Data only: does not really make sense

- In practice, the docs are stored separately from
the index, and the index is ‘encrypted’

 Example of leakage vs efficiency: keyword frequency

- Padding or ON}-coemp-/cormmn-

e+@8

e+07 |0t T
' +

le+86

1686868

16688

16648

166

18

1

Distinguishing those
queries is easy

Property Preserving Encryption

Deterministic encryption, Order Preserving Encryption
v Legacy compatible (works on top of unencrypted DB)
v' Very efficient

Not secure in practice (frequency analysis)

FHE & ORAM

Fully Homomorphic Encryption Oblivious RAM
v Support arbitrary queries v Support arbitrary queries
v Fully secure v Reveals the results count

Not efficient at all Large communication overhead

Efficiency

The Nope Zone

Secure but inefficient

Security

Client

Server

Client

W

Server

D’

D’»

D3

D4

D’s

Client

Same query —> same acCesses

Repetition of queries leaks
Server

Lower bounds

* Oblivious RAM lower bound: if one wants to hide the access pattern to a memory of size N,

the computational overhead is
log N
O g
log o

* A similar lower bound exists for searchable encryption: a search pattern-hiding SE incurs a
search overhead of
1 | DB |
oz ()

log o

§)

Efficiency

The Nope Zone

Secure but inefficient

Security

Efficiency

® Plaintext

® Property Preserving

e
e Secure &

Efficient but insecure efficient
The Grall

Secure but
Inefficient

The Nope Zone

Security

Client

w —

| KNOW. that W was

Server e
updated !

o

File injection attacks [ZKP’16]

* |nsert purposely crafted documents in the DB
(e.g. spam for encrypted emails)

W1 I W2t W3 Wa | W5 Wg W7 WS
Do W1 Wo lWs |l Wa W5 Ws W7 Ws
W1 | W2 f W3 Wa | W5 Weg W7 | WS

log |W| injected documents

t

Active adaptive attacks

 [hese adaptive attacks use the update leakage

 We need SE schemes with oblivious updates

 Good news: we know how to do it at a small cost (see 2odpoc or Diana)

A\ but there is also a lower bound on the efficiency of such schemes

fficiency

® Plaintext

® Property Preserving
Enc.

o
Simple SE

Security

® Diana

Efficiency

® Plaintext

® Property Preserving
Enc.

o
Simple SE

Security

® Diana

Can we get here?

Practical Efficiency

 We mostly focused on the asymptotical complexity (comp. & comm.), but this

IS not enough.

* On hard drives, locality of accesses is important.

Cleartext DB

Simple SSE

D+

Do

D3

DY

Ds

D6

One (random) access

D+

D3

Nw random accesses

Practical Efficiency

 Making many accesses Is very costly

4kB read (HDD) 6 ms
RSA SK Operation 1 ms
RSA PK Operation 0.05 ms
ECC exponentiation 0.2 ms
PRF Evaluation 300 ns

* |t is worth reading more than necessary to avoid some accesses: reading
once O(log N) bytes is better than reading O(log log N) times O(1) bytes.

» No free lunch ® :
[CT’14] Constant locality & constant read efficiency implies w(N) storage.

fficiency

® Plaintext

® Property Preserving
Enc.

o
Simple SE

Security

® Diana

fficiency

® Plaintext

® Property Preserving
Enc.

o
Simple SE

Security

® Diana

Practical Efficiency

* Cool guys use flash memory now!

4kB read (HBD) 6.Mmms
RSA SK Operation 1 ms
RSA PK Operation 0.05 ms
ECC exponentiation 0.2 ms
PRF Evaluation 300 ns

 SSDs are not local at all! There is built-in parallelism.

» |ocality is no longer the right metric. Focus on the # of read pages.

» The previous lower bound no longer applies ®

fficiency

® Plaintext

® Property Preserving
Enc.

o
Simple SE

Security

® Diana

Efficiency

® Plaintext

® Property Preserving =
o 4

Enc.

o
Simple SE

Security

® Diana

Under submission

Throughput half a raw read
of the results (on a SSD)

Recipe:

- mix a systems-oriented
approach, ...

- a pinch of cryptography, ...
- a lot of algorithmic, ...

- a spoon of statistics, ...

- shake everything, ...

- and implement the result in

your favorite language
(C/C++/Rust)

Conclusion

* |t is hard (sometimes impossible) to combine efficiency, features and security
* A lot of improvements have been made in the knowledge of SE:

» Better security models and constructions

* Better understanding of attacks

* Practical implementations

 What about a large scale adoption?

Conclusion

* Probably still too inefficient for large scale databases (think TB)

* Not suited for complex queries yet (think SQL)

« Maybe we are asking for too much security? @

* Basic database encryption would higher the cost of database theft (memory
dumps are hard) and prevent 90% of today’s leaks

0% of leaked
databases were
encrypted

Questions?

https://raphael.bost.fyi/publications/

