
Forward & Backward Private
Searchable Encryption from
Constrained Cryptographic Primitives
Raphael Bost, Brice Minaud, Olga Ohrimenko

ACM CCS’17 - Dallas, TX - 11/01/2017

Great Co-Authors

Brice Minaud 
RHUL

Olga Ohrimenko 
MSR Cambridge

Searchable Encryption
Outsource data

Securely

Keep search functionalities

Aimed at efficiency

… we have to leak some information …

… and this can lead to devastating attacks

TL;DR

We want to reduce the leakage due to insertions and deletions in the DB

We introduce new definitions to formalize the reduction of leakage

We use constrained cryptographic primitives (constrained PRFs,
puncturable encryption) for provably secure fine-grained access control

We implement the new schemes

Forward Privacy

Forward-private: an update does not leak any information on the updated
keywords (often, no information at all)

Thwart adaptive file injection attacks [ZKP16]

Few existing constructions

[SPS14]: ORAM-based, expensive updates

[B16]: Asymptotically optimal, (very) low update throughput in practice

A Simple Dynamic Scheme
In regular index-based schemes: suppose 
w matches DB(w) = (ind1, … , indn). 
		 Kw||K’w ⟵ H(K,w) 
		 ∀1≤ i ≤ nw, ti ⟵ F(Kw,i), EDB[ti] ⟵ F(K’w,i) ⊕ indi  
 
Search(w): the client sends (Kw,K’w) to the server

Update(add,w,ind): Client computes 
tn+1 ⟵ F(Kw,nw+1), c ⟵ F(K’w,nw+1) ⊕ indi, sends (tn+1,c)

Not forward-private: the server can compute tn+1 from Kw

Constrained PRF
Can we restrict the evaluation of F(Kw,.) on [1,n]?

PRF: Setup ⟶ K 	 	 	 	 	 Eval(K,x) ⟶ F(K,x)

CPRF: Constrain(K,C) ⟶ KC Eval(KC,x) ⟶ F(K,x) if C(x) = 1, ⊥ otherwise

F(K,x) is indistinguishable from random as long as no KC with C(x)=1 has
been released

Introduced in [BW13], [KPTZ13], and [BGI14]  
Many applications (e.g. broadcast encryption)

Range-Constrained PRF

Consider the circuits Cn(x) = 1 if and only if 1≤ x ≤ n (range circuits)

Kn = Constrain(K,n) can only be used to evaluate F on [1,n]

Generic FP from Range-Constrained
PRF (FS-RCPRF)

Kw||K’w ⟵ H(K,w) 
∀1≤ i ≤ n, ti ⟵ F(Kw,i), EDB[ti] ⟵ F(K’w,i)⊕indi 	 	 	 	 	 	 (as before)

Update(add,w,ind): Client sends 
(tn+1,c) ⟵ (F(Kw,n+1), F(K’w,n)⊕ind) 		 	 	 	 	 	 	 	 	 (as before)

Search(w): the client sends Knw ⟵ Constrain(Kw,n) to the server. The server
calls Eval(Knw, x) on 1≤ x ≤ n

The server cannot use Knw to track future updates ➡ Forward privacy

Diana: GGM instantiation of FS-
RCPRF

Instantiate F with the tree-based PRF construction of GGM

Asymptotically less efficient than Σoφoς

In practice, a lot better. Always IO bounded (for both
searches and updates)

Search: <1µs per match (on RAM)  
Update: 174 000 entries per second (4300 for Σoφoς)

Deletions

How to delete entries in an encrypted database?

Existing schemes use a ‘revocation list’

Pb: the deleted information is still revealed to the server

Backward privacy: ‘nothing’ is leaked about the deleted documents

Backward privacy

We define three flavors of backward privacy:

I. Backward privacy with insertion pattern

II. Backward privacy with update pattern

III.Weak backward privacy

Backward privacy with insertion
pattern
Leaks:

The documents currently matching w,

When they were inserted

The total number of updates on w

Backward privacy with update pattern

Leaks:

The documents currently matching w,

When they were inserted

When all the updates (add & del) on w happened

Weak backward privacy

Leaks:

The documents currently matching w,

When they were inserted

When all the updates (add & del) on w happened

Which deletion update canceled which insertion update

Example of the differences
Consider the sequence of updates

 
(+,ind1,{w1,w2}) ; (+,ind2,{w1}) ; (-,ind1,{w1}) ; (+, ind3, {w2})  

Search(w1) leaks:
I. ind2 and that it was added at time 2.
II. Leakage for I. + w1 updated at times 1, 2, and 3.
III. Leakage for II. + the entry inserted at time 1 was deleted at time 3.

A baseline construction

Baseline: the client fetches the encrypted lists of inserted and deleted
documents, locally decrypts and retrieves the documents.

The encrypted lists are implemented using forward-private SSE.
✗ 2 interactions & O(aw) communication complexity

Moneta & Fides
Moneta: baseline construction with ORAM-based SSE

Backward privacy with insertion pattern

Very high computational and communicational cost

Fides: baseline construction using Diana/Σoφoς

Backward privacy with update pattern

Reduced cost compared to Moneta

Backward privacy with optimal
updates & communication
Could we prevent the server from decrypting some entries?

Puncturable Encryption [GM’15]: Revocation of decryption capabilities for
specific messages

Encrypt a message with a tag. Revoke the ability to decrypt a set of tags:
puncture the secret key

Based on non-monotonic ABE [OSW’07]

Backward privacy from Puncturable
Encryption

Insert (w, ind): encrypt (w, ind) with tag t = H(w,ind), and add it to a (possibly
forward-private) SE scheme Σ

Delete: puncture the decryption key SK on tag t = H(w,ind)

Search w: search for w in Σ and give the punctured SK to the server. Server
decrypts the non-deleted results.

Backward privacy from Puncturable
Encryption
Pb: the punctured SK size grows linearly (# deletions). One additional key element
per deletion.

Outsource the storage: put the SK elements in a new SSE instance on the server

Requires an incremental PE scheme (as [GM’15]) 
The puncture alg. only needs a constant fraction of SK

SK = (sk0,sk1,…,skd-1) 
Puncture(SK,t) = IncPunct(sk0,t,d) = (sk’0, skd)

sk0 is stored locally by the client

Janus
Not so good:

✗ O(|W|) client storage

✗ O(nw.dw) search comp.

✗ Uses pairings (not fast)

Good:

✓Forward & backward-private

✓Optimal update complexity

✓Optimal communication

Conclusion

Leakage during updates is a real security issue: forward & backward privacy

New way to construct forward-private schemes from constrained PRFs

Diana: super efficient construction made possible from CPRFs

Definition and constructions of backward privacy offering different tradeoffs

Janus: the first single roundtrip backward private construction, based on a
(very) cool cryptographic tool — puncturable encryption

Questions?
ia.cr/2017/805
opensse.github.io

https://ia.cr/2017/805
https://opensse.github.io

