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Security vs. Efficiency

If you had one thing to keep from this presentation:  

Searchable encryption is all about a security-
performance tradeoff

No free lunch …



This presentation

What are the theoretical and practical challenges/open 
problems in searchable encryption? 

Lower bounds 

Constructions 

Implementation

We will focus on single keyword SE



Security vs. Efficiency
Efficiency:  

Computational complexity 

Communication complexity 

Number of interactions 

Security: 

???



Evaluating the security

Use the leakage function from the security definitions 
✓ Provable security 
✗ Very hard to understand the extend of the leakage 

Rely on cryptanalysis: leakage-abuse attacks 
✗ Maybe not the best adversary 
✓ ‘Real world’ implications



Evaluating the security

We just saw (cf. Kenny’s talk) attacks on legacy-
compatible searchable encryption 

State-of-the-art schemes leak the number of results of 
a query 
➡ Enough to recover the queries when the adversary 

knows the database [CGPR’15] 
➡ Counter-measure: padding (it has a cost)



Index-Based SE [CGKO’06]

Structured encryption of the reversed index: search 
queries allow partial decryption 

Search leakage :  
repetition of queries (search pattern) 
number of results



Simple Index-Based SE

Keyword w matches DB(w) = (ind1, … , indn). 
Kw ⟵ F(K,w)  
∀1≤ i ≤ n, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi) 

Search(w): the client sends F(K,w) to the server



Efficiency of the scheme
∀1≤ i ≤ |DB(w)|, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi) 
Optimal computational and communication complexity 
A lot slower than legacy-compatible constructions ! 

ti’s are random ➡ random accesses  
Legacy-compatible ➡ sequential accesses 

Sequential accesses are free after the first one



Locality of SE

To be competitive with unencrypted databases, SE 
schemes must have good locality.  

We do not want to access to much data. 
Need of good read efficiency. 

Storage is expensive: low storage overhead is required.



Locality of SE

Bad news!  
It is impossible to achieve security, constant locality, 
constant read efficiency and optimal storage all at the 
same time [CT’14]. 

The lower bound is tight [ANSS’16] (good news?). 

Explicit security-performance tradeoff.



Dynamic Index-Based SE
You might want to update your database. How to add 
new documents? 

∀1≤ i ≤ |DB(w)|, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi) 

To insert the entry (w,ind), the client: 
retrieves n = |DB(w)| (stored on the server) 
computes tn+1 ⟵ F(Kw,n+1), c ⟵ Enc(Kw,indi) 
sends (tn+1, c) 

Update leakage: repetition of updated keywords



File injection attacks [ZKP’16]

‘With great power comes great responsibility.’ 
Uncle Ben  

New features means new abilities for the attacker. 

The adversary can now be active and insert his own 
documents (e.g. emails).



File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB.  
Use binary search to recover the query 

log K injected documents

D1 k1 k2 k3 k4 k5 k6 k7 k8

D2 k1 k2 k3 k4 k5 k6 k7 k8

D3 k1 k2 k3 k4 k5 k6 k7 k8



File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB.  
Use binary search to recover the query 
➡ log K injected documents 

Counter-measure: no more than T kw./doc.  
➡ (K/T) · log T injected documents to attack 

Adaptive version of the attack 
➡ (K/T) + log T injected documents to attack 
➡ log T injected documents with prior knowledge



‘Active’ Adaptive Attacks
All these adaptive attacks use the update leakage: 

For an update, most SE schemes leak if the inserted 
document matches a previous query 

We need SE schemes with oblivious updates

Forward Privacy



Forward Privacy
Forward private: an update does not leak any information on 
the updated keywords (often, no information at all) 

Secure online build of the EDB 

Only one scheme existed so far [SPS’14] 

➡ ORAM-like construction 

✗ Inefficient updates: O(log2 N) comp., O(log N) comm. 

✗ Large client storage: O(Nε)



Σoφoς

Forward private index-based scheme 

Low overhead for search and update 

A lot simpler than [SPS’14]



Add (ind1,…,indc) to w

Search w

UT1(w) UTc(w)…UT2(w)

ST(w)



Add (ind1,…,indc) to w

Search w

Add indc+1 to w

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)



Naïve solution: STi(w) = F(Kw,i), send all STi(w)’s 

✗ Client needs to send c tokens 

✗ Sending only Kw is not forward private 

Use a trapdoor permutation

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK



UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Search: 

Client: O(1) 

Server: O(|DB(w)|)

Update: 

Client: O(1) 

Server: O(1)

Optimal



Storage: 

Client: O(K) 

Server: O(|DB|)

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Open problem: can we design a 
completely optimal FP scheme? 

Do we have to pay for security?



The future of forward privacy

Many open problems: 

Can we design a completely optimal FP scheme? 

Can we get rid of PK crypto and still be optimal in 
computation and communication? 

Again, what is the cost of security?



Locality of forward privacy

We can build inefficient FP schemes with low locality: 
rebuild the DB at every update. 

[DP’17]: FP scheme with O(log N) update complexity, 
O(L) locality, O(N1/s/L) read eff. and O(N.s) storage. 

Can we do better?  
Conjecture: optimal updates imply linear locality.  
Intuition: entries with same keyword cannot be ‘close’.



Deletions

How to delete entries in an encrypted database? 

Existing schemes use a ‘revocation list’ 

Pb: the deleted information is still revealed to the server 

Backward privacy: ‘nothing’ is leaked about the 
deleted documents



Backward privacy
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Backward privacy

Baseline: the client fetches the encrypted lists of inserted 
and deleted documents, locally decrypts and retrieves 
the documents. 
✓ Optimal security 
✗ 2 interactions  
✗ O(aw) communication complexity



Backward privacy with 
optimal updates & comm.
Could we prevent the server from decrypting some 
entries? 

Puncturable Encryption [GM’15]: Revocation of 
decryption capabilities for specific messages 

Encrypt a message with a tag. Revoke the ability to 
decrypt a set of tags: puncture the secret key 

Based on non-monotonic ABE [OSW’07]



Backward privacy from PE

Insert (w, ind): encrypt (w, ind) with tag t = H(w,ind), 
and add it to a (possibly FP) SE scheme Σ 

Delete: puncture the secret key on tag t = H(w,ind) 

Search w: search w in Σ and give the punctured SK to 
the server. Server decrypts the non-deleted results.



Backward privacy from PE
Pb: the punctured SK size grows linearly (# deletions) 

Outsource the storage: put the SK elements in an 
encrypted DB on the server 

Requires an incremental PE scheme (as [GM’15]) 
The puncture alg. only needs a constant fraction of SK 

Puncture(SK,t) = IncPunct(sk0,t,d) = (sk’0, skd) 

sk0 is stored locally



Backward privacy from PE
Good: 

Forward & Backward 
private 

Optimal communication 

Optimal updates

Not so good: 

O(K) client storage 

O(nw.dw) search comp. 

Uses pairings (not fast)

Is it possible to do better? 
What is this optimal tradeoff?



Verifiable SE
The server might be malicious: return fake results, 
delete real results, … 

The client needs to verify the results 
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Verifiable SE
This is not free: lower bound (derived from [DNRV’09]) 

If client storage is less than |W|1-ε, search complexity 
has to be larger than log |W| 

The lower bound is tight: using Merkle hash trees and 
set hash functions 

Many possible tradeoffs between search & update 
complexities



SE in practice

In theory, there is no difference between theory and 
practice… 

Many, many side effects, unexpected behavior, etc, 
can happen 

Security: leakage-abuse attacks 
Implementation details have an impact on efficiency 
and security



Locality vs. Caching

The OS is ‘smart’: it caches memory. 

Be careful when you are testing your construction on 
small databases 

Once the database is cached, non locality disappears 

Beware of the evaluation of performance
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Crypto vs. Seek time 

The magic world of searchable encryption: 

Symmetric crypto is free 

Asymmetric crypto is not overly expensive 

A lot of the cost comes from the non-locality of 
memory accesses



Not-so-snapshot adversary

Many encrypted databases (CryptDB, ARX, Seabed, 
CipherCloud, …) claim security against snapshot 
adversaries 

Data structures are not history-independent. 
A snapshot leaks about previous operations. 

Snapshot attacks do not take this into account



Today

Existing implementation of legacy-compatible EDB. 
Not great security guarantees 

Existing research implementations of index-based SE  
Clusion (Java), my work (C/C++) 

It would require quite some work to have a production-
level implementation of those schemes



Conclusion

SE involves very diverse topics: theoretical CS, 
cryptanalysis, cryptographic primitives, systems, … 

Many open problems (e.g. lower bounds) 

Real world cryptography, with great impact
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Slides on my webpage
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Questions?


