
Searchable Encryption
From Theory to Implementation
Raphael Bost 
Direction Générale de l’Armement - Maitrise de l’Information & Université de Rennes 1

ECRYPT NET Workshop - Crypto for the Cloud & Implementation - 28/06/2017

Security vs. Efficiency

If you had one thing to keep from this presentation:  

Searchable encryption is all about a security-
performance tradeoff

No free lunch …

This presentation

What are the theoretical and practical challenges/open
problems in searchable encryption?

Lower bounds

Constructions

Implementation

We will focus on single keyword SE

Security vs. Efficiency
Efficiency:

Computational complexity

Communication complexity

Number of interactions

Security:

???

Evaluating the security

Use the leakage function from the security definitions
✓ Provable security
✗ Very hard to understand the extend of the leakage

Rely on cryptanalysis: leakage-abuse attacks
✗ Maybe not the best adversary
✓ ‘Real world’ implications

Evaluating the security

We just saw (cf. Kenny’s talk) attacks on legacy-
compatible searchable encryption

State-of-the-art schemes leak the number of results of
a query
➡ Enough to recover the queries when the adversary

knows the database [CGPR’15]
➡ Counter-measure: padding (it has a cost)

Index-Based SE [CGKO’06]

Structured encryption of the reversed index: search
queries allow partial decryption

Search leakage :
repetition of queries (search pattern)
number of results

Simple Index-Based SE

Keyword w matches DB(w) = (ind1, … , indn).
Kw ⟵ F(K,w)  
∀1≤ i ≤ n, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi)

Search(w): the client sends F(K,w) to the server

Efficiency of the scheme
∀1≤ i ≤ |DB(w)|, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi)
Optimal computational and communication complexity
A lot slower than legacy-compatible constructions !

ti’s are random ➡ random accesses  
Legacy-compatible ➡ sequential accesses

Sequential accesses are free after the first one

Locality of SE

To be competitive with unencrypted databases, SE
schemes must have good locality.

We do not want to access to much data. 
Need of good read efficiency.

Storage is expensive: low storage overhead is required.

Locality of SE

Bad news!  
It is impossible to achieve security, constant locality,
constant read efficiency and optimal storage all at the
same time [CT’14].

The lower bound is tight [ANSS’16] (good news?).

Explicit security-performance tradeoff.

Dynamic Index-Based SE
You might want to update your database. How to add
new documents?

∀1≤ i ≤ |DB(w)|, ti ⟵ F(Kw,i), EDB[ti] ⟵ Enc(Kw,indi)

To insert the entry (w,ind), the client:
retrieves n = |DB(w)| (stored on the server)
computes tn+1 ⟵ F(Kw,n+1), c ⟵ Enc(Kw,indi)
sends (tn+1, c)

Update leakage: repetition of updated keywords

File injection attacks [ZKP’16]

‘With great power comes great responsibility.’
Uncle Ben

New features means new abilities for the attacker.

The adversary can now be active and insert his own
documents (e.g. emails).

File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB.  
Use binary search to recover the query

log K injected documents

D1 k1 k2 k3 k4 k5 k6 k7 k8

D2 k1 k2 k3 k4 k5 k6 k7 k8

D3 k1 k2 k3 k4 k5 k6 k7 k8

File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB.  
Use binary search to recover the query
➡ log K injected documents

Counter-measure: no more than T kw./doc.
➡ (K/T) · log T injected documents to attack

Adaptive version of the attack
➡ (K/T) + log T injected documents to attack
➡ log T injected documents with prior knowledge

‘Active’ Adaptive Attacks
All these adaptive attacks use the update leakage:

For an update, most SE schemes leak if the inserted
document matches a previous query

We need SE schemes with oblivious updates

Forward Privacy

Forward Privacy
Forward private: an update does not leak any information on
the updated keywords (often, no information at all)

Secure online build of the EDB

Only one scheme existed so far [SPS’14]

➡ ORAM-like construction

✗ Inefficient updates: O(log2 N) comp., O(log N) comm.

✗ Large client storage: O(Nε)

Σoφoς

Forward private index-based scheme

Low overhead for search and update

A lot simpler than [SPS’14]

Add (ind1,…,indc) to w

Search w

UT1(w) UTc(w)…UT2(w)

ST(w)

Add (ind1,…,indc) to w

Search w

Add indc+1 to w

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

Naïve solution: STi(w) = F(Kw,i), send all STi(w)’s

✗ Client needs to send c tokens

✗ Sending only Kw is not forward private

Use a trapdoor permutation

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Search:

Client: O(1)

Server: O(|DB(w)|)

Update:

Client: O(1)

Server: O(1)

Optimal

Storage:

Client: O(K)

Server: O(|DB|)

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Open problem: can we design a
completely optimal FP scheme?

Do we have to pay for security?

The future of forward privacy

Many open problems:

Can we design a completely optimal FP scheme?

Can we get rid of PK crypto and still be optimal in
computation and communication?

Again, what is the cost of security?

Locality of forward privacy

We can build inefficient FP schemes with low locality:
rebuild the DB at every update.

[DP’17]: FP scheme with O(log N) update complexity,
O(L) locality, O(N1/s/L) read eff. and O(N.s) storage.

Can we do better?  
Conjecture: optimal updates imply linear locality.  
Intuition: entries with same keyword cannot be ‘close’.

Deletions

How to delete entries in an encrypted database?

Existing schemes use a ‘revocation list’

Pb: the deleted information is still revealed to the server

Backward privacy: ‘nothing’ is leaked about the
deleted documents

Backward privacy

Brice Minaud 
RHUL

Olga Ohrimenko
MSR Cambridge

Backward privacy

Baseline: the client fetches the encrypted lists of inserted
and deleted documents, locally decrypts and retrieves
the documents.
✓ Optimal security
✗ 2 interactions
✗ O(aw) communication complexity

Backward privacy with
optimal updates & comm.
Could we prevent the server from decrypting some
entries?

Puncturable Encryption [GM’15]: Revocation of
decryption capabilities for specific messages

Encrypt a message with a tag. Revoke the ability to
decrypt a set of tags: puncture the secret key

Based on non-monotonic ABE [OSW’07]

Backward privacy from PE

Insert (w, ind): encrypt (w, ind) with tag t = H(w,ind),
and add it to a (possibly FP) SE scheme Σ

Delete: puncture the secret key on tag t = H(w,ind)

Search w: search w in Σ and give the punctured SK to
the server. Server decrypts the non-deleted results.

Backward privacy from PE
Pb: the punctured SK size grows linearly (# deletions)

Outsource the storage: put the SK elements in an
encrypted DB on the server

Requires an incremental PE scheme (as [GM’15]) 
The puncture alg. only needs a constant fraction of SK

Puncture(SK,t) = IncPunct(sk0,t,d) = (sk’0, skd)

sk0 is stored locally

Backward privacy from PE
Good:

Forward & Backward
private

Optimal communication

Optimal updates

Not so good:

O(K) client storage 

O(nw.dw) search comp.

Uses pairings (not fast)

Is it possible to do better? 
What is this optimal tradeoff?

Verifiable SE
The server might be malicious: return fake results,
delete real results, …

The client needs to verify the results

David Pointcheval
ENS

Pierre-Alain Fouque
U. Rennes 1

Verifiable SE
This is not free: lower bound (derived from [DNRV’09])

If client storage is less than |W|1-ε, search complexity
has to be larger than log |W|

The lower bound is tight: using Merkle hash trees and
set hash functions

Many possible tradeoffs between search & update
complexities

SE in practice

In theory, there is no difference between theory and
practice…

Many, many side effects, unexpected behavior, etc,
can happen

Security: leakage-abuse attacks
Implementation details have an impact on efficiency
and security

Locality vs. Caching

The OS is ‘smart’: it caches memory.

Be careful when you are testing your construction on
small databases

Once the database is cached, non locality disappears

Beware of the evaluation of performance

������

�����

����

���

��� ���� ����� ������ �����

��
��
��

���
�
��
��

��
��
��
�
��
���

��
��

������ �� �������� ���������

��������� � � � ����� ���� ���
��������� � � � ����� ��� ���

����� ������������ � � � ����� ����� ���

Crypto vs. Seek time

The magic world of searchable encryption:

Symmetric crypto is free

Asymmetric crypto is not overly expensive

A lot of the cost comes from the non-locality of
memory accesses

Not-so-snapshot adversary

Many encrypted databases (CryptDB, ARX, Seabed,
CipherCloud, …) claim security against snapshot
adversaries

Data structures are not history-independent. 
A snapshot leaks about previous operations.

Snapshot attacks do not take this into account

Today

Existing implementation of legacy-compatible EDB. 
Not great security guarantees

Existing research implementations of index-based SE  
Clusion (Java), my work (C/C++)

It would require quite some work to have a production-
level implementation of those schemes

Conclusion

SE involves very diverse topics: theoretical CS,
cryptanalysis, cryptographic primitives, systems, …

Many open problems (e.g. lower bounds)

Real world cryptography, with great impact

Bibliography

SoK: Cryptographically Protected Database Search  
Fuller et al. in SP 2017

See https://r.bost.fyi/se_references/

Slides on my webpage

https://raphael.bost.fyi/se_references/

Questions?

