® :
qu
ap 2% S —
g i O O
S P é =
%&) “pattern fioat g
4, confidentiality [aseouiy €/ =
A 0& -
0/~ 2 0/ o —
0/ PRF E€NENC gtorage
FORWARD PRIVATE

SEARCHABLE ENCRYPTION & BEYOND

DATE

22/02/2017

MIT - RAPHAEL BOST

Searchable Encryption

* Qutsource data ...
* ... securely

* ... Keep search functionalities

(Generic Solutions

Fully Homomorphic Encryption, MPC, ORAM
v Perfect security

X Large overhead (computation,
communication)

Ad-hoc Constructions

Can we get more efficient solutions?
* Yes, but ...

* ... we have to leak some information

Security/performance tradeoff

Property Preserving
ENcryption

Deterministic Encryption, OPE, ORE
v Legacy compatible
v Very Efficient

X Not secure in practice (e.g. attacks on CryptDB)

INndex-Based SE [cGkO06]

Structured encryption of the reversed index: search
queries allow partial decryption

* Search leakage :

* repetition of queries (search pattern)
* Update leakage:

* updated documents

* repetition of updated keywords

Security-Performance
radeoft

R
FHE x
ORAM
X

> [SPS’14]

E X X

% [KPR12][CJJ+’13]

Legacy
compatible
X Plain
X

>
Performance

'‘Passive’ Attacks

* [IKK’12]: Using a co-occurrence probability matrix,
the attacker can recover from 100% to 65% of the
queries

* [CGPR’15]: Improvement of the IKK attack, 100%
recovery

= Use padding as a countermeasure

Flle Injection Attacks zxr s

Non-adaptive file injection attacks

* |nsert purposely crafted documents in the DB.
Use binary search to recover the query

log K inj&ted documents

‘Active’ Attacks

* [ZKP’16]: Non-adaptive file injection attacks

* |nsert purposely crafted documents in the DB.
Use binary search to recover the query

* Counter measure: no more than T kw./doc.

(K/T) - log T injected documents

* Adaptive version of the attack
(K/T) + log T injected documents

‘Active’ Adaptive Attacks

* [ZKP’16]: File injection attacks
* Adaptive version of the attack

(K/T) + log T injected documents

* |f the attacker has prior knowledge about the
database (e.g. frequency distribution)

log T injected documents

‘Active’ Adaptive Attacks

* All these adaptive attacks use the update leakage:

* For an update, most SE schemes leak if the
iInserted document matches a previous query

* \We need SE schemes with oblivious updates

Forward Privacy

Forward Privacy

* Forward private: an update does not leak any
information on the updated keywords

* Secure online build of the EDB

* Only one existing scheme so far [SPS’14]
= ORAM-like construction
X Inefficient updates

X Large client storage

200h0C

* Forward private index-based scheme
* Low search and update overhead

* A |lot simpler than [SPS’14]

Add (indi,...,indc) to w

Add (indi,...,indc) to w

|

4— SIPENl«— ... <«—RIEW)

STe+1(W)

Soma A R e N NG R

UT1(w) UT2(w)

=

- m

T[PK TUPK

TUPK TUPK

ST1(W) S S T2(W s] S Tc(W) B o STC+1

\“‘Sy\“lsy\“‘fk/\“y

* Naive solution: STi(w) = F(Kw,i)
X Client needs to send c tokens
X Sending only Ky is not forward private

* Use a trapdoor permutation

UT1(w) UT2(w)

*-T *T

T[PK TUPK

TUPK TUPK

ST+(w) R ST(w —BE0«— STC+1
* Client stores W[w] := ST¢(w)
* Search w: send ST¢(w)
* Update: W[w] := 1 1sk(STe(w))

UT1(w)

UT2(w)

d

'

TIPK

ST1(W) S S T2(W

T[PK

Search:

* Client: constant

* Server: O(|DB(w

\“‘Sy\“‘sy\“‘y\“y

)I)

*'T

TUPK TUPK

STC 4_ STc+1

Update:
* Client: constant

* Server: constant

Optimal

T TIPK

ST1(W) S S T2(W
L \“‘Sy Mt
Storage:

* Client: O(K)

* Server: O(|DB|)

200h0C

* TDP r? RSA or Rabin
X Elements (STs) are large (2048 bits).
X Client storage is impractical

* Client only stores ¢, pseudo-randomly generates
ST4(w), computes ST¢(w) on the fly

SA

* Search is embarrassingly parallelizable

i b

v Efficient (non-iterative) using K

xd' == Qj(dc mod ¢(N)) m()d N

200h0C - Security

* Update leakage: nothing Forward private

* Search leakage:
- search pattern

- ‘history’ of w: the timestamped list of updates of
keyword w

Adaptive security (ROM)

200h0C - evaluation

* C/C++ full fledged implementation

* Server KVS: RocksDB

* Evaluated on a desktop computer
4 GHz Core i7 CPU (16 cores), 16GB RAM, SSD

https://gitlab.com/sse/sophos

https://gitlab.com/sse/sophos

200h0C - evaluation

2M keywords, 140M entries

5.25GB server storage 64.2 MB Client storage

0.04 ' ' mE ' =] ' ' ' il
‘With RPC -
0.035 T Without RPC —— _

0.03 | g
0.025 | :
0.02 |
0.015 |

0.01

Search time per matching entry (ms)

e e et e e e e
10 100 1000 10000 100000

Number of matching documents

200h0C

* Provable forward privacy

* \ery simple

* Efficient search (IO bounded)

* Asymptotically efficient update (optimal)

* |n practice, very low update throughput
(4300 entries/s - 20x slower than other work)

Security-Performance
radeoft

R
FHE x
ORAM 20(p0oC
X X

> [SPS’14]

= X X

% [KPR12][CJJ+’13]

Legacy
compatible
X Plain
X

>
Performance

BEYOND
FORWARD

PRIVACY

PRACTICAL ISSUES WITH
SEARCHABLE ENCRYPTION
AND OPEN PROBLEMS

Thwarting File Injections

* 20doc¢ only thwarts the adaptive file injection
attacks

* |dea: randomly delay the insertion of entries in the
the database

* How to define the security of such counter-
measures?

| ocality

* 20¢poc makes 1 random access/match

- Even with SSDs, random disk accesses are very
expensive

* One cannot construct a (static) SE scheme with
optimal locality, linear storage, or optimal search
complexity [CT’14]

* [ANSS’16] built a scheme with optimal loc., linear
storage, and high read efficiency (log log N)

200p0C - Locality

0.045

o 0.04 }

E

2 0.035 |

=

()

2 003}

==

[

©

e 0.025 |

2

o 002}

E

S oG5y

qv]

)

@ 0.01 |
0.005

Database with 14e5 entries
Database with 14e6 entries
Database with 14e7 entries

S ——

10

100

1000 10000

Number of matching documents

100000

| ocality and Forward Priv.

* The [ANSS’16] solution is inherently static. What
about dynamic schemes?

* | ocality goes against forward privacy
Locality: put entries with the same kw. close
F.P.: entries matching the same kw. are unrelated

* | think there is a (complicated) lower bound
involving locality, comm. complexity, DB size and
read efficiency

Open Problem

| ocality In practice

* Regroup entries matching the same keyword by
(large) blocks

* [MM’17] combine this idea with ORAM to save
80% of the |IOs during search

* Other proposal: cache search results

Other adversaries

* The literature only focuses on persistent
adversaries. Could we have better guarantees
against weaker ones”?

* Snapshot adversaries, ‘late’ persistent adversaries

* Might be important in practice: e.g. when caching
previous queries’ results

Backward Privacy

* Queries should not be executed over deleted
documents (cf. secure deletion)

* Only interesting against ‘late’ persistent
adversaries

* Achieved by ORAM. Looks hard to achieve
efficiently (single interaction, low comm.
complexity)

THANKS!

Paper: http://ia.cr/2016/728
Code: htips://gitlab.com/sse/sophos

http://ia.cr/2016/728
https://gitlab.com/sse/sophos

