
MIT - RAPHAEL BOSTDATE 22/02/2017

FORWARD PRIVATE  
SEARCHABLE ENCRYPTION & BEYOND

Searchable Encryption

Outsource data …

… securely

… keep search functionalities

Generic Solutions

Fully Homomorphic Encryption, MPC, ORAM

✓Perfect security

✗ Large overhead (computation,
communication)

Ad-hoc Constructions

Can we get more efficient solutions?

Yes, but …

… we have to leak some information

Security/performance tradeoff

Property Preserving
Encryption
Deterministic Encryption, OPE, ORE

✓ Legacy compatible

✓ Very Efficient

✗ Not secure in practice (e.g. attacks on CryptDB)

Index-Based SE [CGKO’06]
Structured encryption of the reversed index: search
queries allow partial decryption

Search leakage :

repetition of queries (search pattern)

Update leakage:

updated documents

repetition of updated keywords

Security-Performance
Tradeoff

Performance

Se
cu

rit
y

FHE
ORAM

Plain

Legacy 
compatible

[SPS’14]

[KPR12][CJJ+’13]

‘Passive’ Attacks

[IKK’12]: Using a co-occurrence probability matrix,
the attacker can recover from 100% to 65% of the
queries

[CGPR’15]: Improvement of the IKK attack, 100%
recovery

➡ Use padding as a countermeasure

File Injection Attacks [ZKP’16]

Non-adaptive file injection attacks

Insert purposely crafted documents in the DB. 
Use binary search to recover the query

D1 k1 k2 k3 k4 k5 k6 k7 k8

D2 k1 k2 k3 k4 k5 k6 k7 k8

D3 k1 k2 k3 k4 k5 k6 k7 k8

log K injected documents

‘Active’ Attacks
[ZKP’16]: Non-adaptive file injection attacks

Insert purposely crafted documents in the DB. 
Use binary search to recover the query

Counter measure: no more than T kw./doc.

(K/T) · log T injected documents
Adaptive version of the attack

(K/T) + log T injected documents

‘Active’ Adaptive Attacks
[ZKP’16]: File injection attacks

Adaptive version of the attack

(K/T) + log T injected documents
If the attacker has prior knowledge about the
database (e.g. frequency distribution)

log T injected documents

‘Active’ Adaptive Attacks
All these adaptive attacks use the update leakage:

For an update, most SE schemes leak if the
inserted document matches a previous query

We need SE schemes with oblivious updates

Forward Privacy

Forward Privacy
Forward private: an update does not leak any
information on the updated keywords

Secure online build of the EDB

Only one existing scheme so far [SPS’14]

➡ ORAM-like construction

✗ Inefficient updates

✗ Large client storage

Σoφoς

Forward private index-based scheme

Low search and update overhead

A lot simpler than [SPS’14]

Add (ind1,…,indc) to w

Search w

UT1(w) UTc(w)…UT2(w)

ST(w)

Add (ind1,…,indc) to w

Search w

Add indc+1 to w

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

Naïve solution: STi(w) = F(Kw,i)

✗ Client needs to send c tokens

✗ Sending only Kw is not forward private

Use a trapdoor permutation

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Client stores W[w] := STc(w)

Search w: send STc(w)

Update: W[w] := π-1SK(STc(w))

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Search:

Client: constant

Server: O(|DB(w)|)

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Update:

Client: constant

Server: constant

Optimal

Storage:

Client: O(K)

Server: O(|DB|)

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Σoφoς
TDP π? RSA or Rabin

✗ Elements (STs) are large (2048 bits).

✗ Client storage is impractical

Client only stores c, pseudo-randomly generates
ST1(w), computes STc(w) on the fly

✓ Efficient (non-iterative) using RSA

Search is embarrassingly parallelizable

x

d.
. .
d

= x

(dc
mod �(N))

mod N

Σoφoς - Security

Update leakage: nothing

Search leakage:

- search pattern

- ‘history’ of w: the timestamped list of updates of

keyword w

Adaptive security (ROM)

Forward private

Σoφoς - Evaluation

C/C++ full fledged implementation

Server KVS: RocksDB

Evaluated on a desktop computer 
4 GHz Core i7 CPU (16 cores), 16GB RAM, SSD

https://gitlab.com/sse/sophos

https://gitlab.com/sse/sophos

Σoφoς - Evaluation
2M keywords, 140M entries 
5.25GB server storage, 64.2 MB Client storage

�����

����

�����

����

�����

����

�����

����

�� ��� ���� ����� ������

��
��
��

���
�
��
��

��
��
��
�
��
���

��
��

������ �� �������� ���������

���� ���
������� ���

Σoφoς
Provable forward privacy

Very simple

Efficient search (IO bounded)

Asymptotically efficient update (optimal)

In practice, very low update throughput
(4300 entries/s - 20x slower than other work)

Security-Performance
Tradeoff

Performance

Se
cu

rit
y

FHE
ORAM

Plain

Legacy 
compatible

[SPS’14]

[KPR12]

Σoφoς

[CJJ+’13]

BEYOND
FORWARD
PRIVACY
PRACTICAL ISSUES WITH
SEARCHABLE ENCRYPTION
AND OPEN PROBLEMS

Thwarting File Injections

Σoφoς only thwarts the adaptive file injection
attacks

Idea: randomly delay the insertion of entries in the
the database

How to define the security of such counter-
measures?

Locality
Σoφoς makes 1 random access/match

- Even with SSDs, random disk accesses are very

expensive

One cannot construct a (static) SE scheme with
optimal locality, linear storage, or optimal search
complexity [CT’14]

[ANSS’16] built a scheme with optimal loc., linear
storage, and high read efficiency (log log N)

Σoφoς - Locality

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 10 100 1000 10000 100000

Se
ar

ch
 ti

m
e

pe
r m

at
ch

in
g

en
try

 (m
s)

Number of matching documents

Database with 14e5 entries
Database with 14e6 entries
Database with 14e7 entries

Locality and Forward Priv.
The [ANSS’16] solution is inherently static. What
about dynamic schemes?

Locality goes against forward privacy 
Locality: put entries with the same kw. close 
F.P.: entries matching the same kw. are unrelated

I think there is a (complicated) lower bound
involving locality, comm. complexity, DB size and
read efficiency

Open Problem

Locality in practice

Regroup entries matching the same keyword by
(large) blocks

[MM’17] combine this idea with ORAM to save
80% of the IOs during search

Other proposal: cache search results

Other adversaries

The literature only focuses on persistent
adversaries. Could we have better guarantees
against weaker ones?

Snapshot adversaries, ‘late’ persistent adversaries

Might be important in practice: e.g. when caching
previous queries’ results

Backward Privacy

Queries should not be executed over deleted
documents (cf. secure deletion)

Only interesting against ‘late’ persistent
adversaries

Achieved by ORAM. Looks hard to achieve
efficiently (single interaction, low comm.
complexity)

THANKS!

Paper: http://ia.cr/2016/728 
Code: https://gitlab.com/sse/sophos

http://ia.cr/2016/728
https://gitlab.com/sse/sophos

