
MSR CAMBRIDGE - RAPHAEL BOSTDATE 13/07/2016 🎂

FORWARD PRIVATE  
SEARCHABLE ENCRYPTION

Searchable Encryption

Outsource data …

… securely

… keep search functionalities

Generic Solutions
We can use generic tools to solve this problem:

Fully Homomorphic encryption

Run all computations on the server 
Complexity linear in the DB size

Oblivious RAM

Hide access pattern but… 
ORAM lower bound (logarithmic) 

Ad-hoc Constructions

Can we get more efficient solutions?

Yes, but …

… we have to leak some information

Security/performance tradeoff

Security of SE

Search(w)

DB(w)

Security of SE

Update(+, w, ind)

Security of SE

Search(w)

Everything the server learns, he
can compute from the leakage
The search protocol can be
simulated from the leakage

L(w,DB(w))

Common Leakage
Search leakage :

repetition of queries (aka. search pattern)

results

Update leakage:

updated documents

repetition of updated keywords

…

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Boolean queries & scalability [CJJKRS13]

↳ various extensions (dynamisms, wildcards, range
queries, …)

Reduced update leakage [SPS14]

…

Security-Performance
Tradeoff

Performance

Se
cu

rit
y

FHE
ORAM

Plain

Legacy 
compatible

[SPS’14]

[KPR12][CJJ+’13]

Leakage-Abuse Attacks

‘Everything the server learns, he can compute
from the leakage’

➡ What can be computed from the leakage?

Recover the queried keywords from the leakage

‘Passive’ Attacks

[IKK’12]: Using a co-occurrence probability matrix,
the attacker can recover from 100% to 65% of the
queries

[CGPR’15]: Improvement of the IKK attack, 100%
recovery

➡ Use padding as a countermeasure

‘Active’ Attacks
[ZKP’16]: Non-adaptive file injection attacks

Insert purposely crafted documents in the DB. 
Use binary search to recover the query

D1 k1 k2 k3 k4 k5 k6 k7 k8

D2 k1 k2 k3 k4 k5 k6 k7 k8

D3 k1 k2 k3 k4 k5 k6 k7 k8

log K injected documents

‘Active’ Attacks
[ZKP’16]: Non-adaptive file injection attacks

Insert purposely crafted documents in the DB. 
Use binary search to recover the query

Counter measure: no more than T kw./doc.

(K/T) · log T injected documents
Adaptive version of the attack

(K/T) + log T injected documents

‘Active’ Adaptive Attacks
[ZKP’16]: File injection attacks

Adaptive version of the attack

(K/T) + log T injected documents
If the attacker has prior knowledge about the
database (e.g. frequency distribution)

log T injected documents

‘Active’ Adaptive Attacks
All these adaptive attacks use the update leakage:

For an update, most SE schemes leak if the
inserted document matches a previous query

We need SE schemes with oblivious updates

Forward Privacy

Forward Privacy
An SE scheme is forward private if its update
protocol does not leak any information about the
updated keywords

L(op,w,ind) = L’(op, ind)
Important feature: secure online build of the EDB

Only one existing scheme so far [SPS’14]

➡ Very close to ORAM (logarithmic updates)

UT1(w) UTc(w)…UT2(w)

ST(w)

Add

(ind1,…,indc) to w Search w

…

Add

(ind1,…,indc) to w

Add

indc+1 to w

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

Search w

Naïve solution: STi(w) = F(Kw,i)

✗ Client needs to send c tokens

✗ Sending only Kw is not forward private

Use a trapdoor permutation

UT1(w) UTc(w)…UT2(w)

ST2(w) … STc(w)ST1(w)

UTc+1(w)

STc+1(w)

H(
.)

H(
.)

H(
.)

H(
.)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

Σoφoς - Complexity
Search(w): 
Client: O(1) 
Server: O(|DB(w)|)

Update(+,w, ind): 
Client: O(1) 
Server: O(1)

Storage: 
Client: O(K) 
Server: O(N)

Optimal

Optimal

Optimal

Σoφoς
TDP π? RSA or Rabin

✗ Elements (STs) are large (2048 bits).

✗ Client storage is impractical

Pseudo-randomly generate ST0(w), and compute
STc(w) on the fly (only c is stored by the client)

✓ Efficient (non-iterative) using RSA

Search is embarrassingly parallelizable

x

d.
. .
d

= x

(dc
mod �(N))

mod N

Σoφoς - Security

Update leakage: nothing

Search leakage:

- search pattern

- ‘history’ of w: the timestamped list of updates of

keyword w

Adaptive security (ROM)

Forward private

Σoφoς - Evaluation

C/C++ full fledged implementation

Server KVS: RockDB

Evaluated on a desktop computer 
4 GHz Core i7 CPU, 8GB RAM, SSD

https://gitlab.com/sse/sophos

https://gitlab.com/sse/sophos

Σoφoς - Evaluation

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 10 100 1000 10000 100000

Se
ar

ch
 ti

m
e

pe
r m

at
ch

in
g

en
try

 (m
s)

Number of matching documents

Database with 14e5 entries
Database with 14e6 entries
Database with 14e7 entries

Σoφoς

Provable forward privacy

Efficient search

Asymptotically efficient update (optimal)

In practice, very low update throughput (4300 p/s -
20x slower than other work)

Security-Performance
Tradeoff

Performance

Se
cu

rit
y

FHE
ORAM

Plain

Legacy 
compatible

[SPS’14]

[KPR12]

Σoφoς

[CJJ+’13]

Ongoing/future work

Improve the update throughput (get rid of RSA)

Dynamic padding

Thwart (non-adaptive) file injection attacks

THANKS!

