%Q%,/. %)
5 Qs >
o0 S 9, —
£ 2 o
D =
'; : attern CU
&J/¢ confidentiality [l \ore o secuity E
O/ “, E
0’ PRF EEMNErC gtorage
FORWARD PRIVATE
SEARCHABLE ENCRYPTION

P 13/07/2016 & MSR CAMBRIDGE - RAPHAEL BOST

Searchable Encryption

* Qutsource data ...
* ... securely

* ... Keep search functionalities

(Generic Solutions

We can use generic tools to solve this problem:
* Fully Homomorphic encryption

* Run all computations on the server
Complexity linear in the DB size

* Oblivious RAM

* Hide access pattern but...
ORAM lower bound (logarithmic)

Ad-hoc Constructions

Can we get more efficient solutions?
* Yes, but ...

* ... we have to leak some information

Security/performance tradeoff

Security of SE

’ i - Search(w)
r—

B |

T —

Security of SE

Security of SE

Search(w)

g

Everything the server learns, he
can compute from the leakage

The search protocol can be
simulated from the leakage

Common Leakage

* Search leakage :
* repetition of queries (aka. search pattern)
* results

* Update leakage:
* updated documents

* repetition of updated keywords

Previous Results

* First constructions [SWPO0O]

* Formalization of the security model [CGKOO06]
* Efficient dynamic constructions [KPR12]

* Boolean queries & scalability [CJJKRS13]

L various extensions (dynamisms, wildcards, range
queries, ...)

* Reduced update leakage [SPS14]

Security-Performance
radeoft

4 X
FHE x
ORAM
X

> [SPS’14]

5 X X

% [KPR12][CJJ+’13]

Legacy
compatible
X Plain
X

>
Performance

| eakage-Abuse Attacks

* 'Everything the server learns, he can compute
from the leakage’

= \What can be computed from the leakage?

* Recover the queried keywords from the leakage

'‘Passive’ Attacks

* [IKK’12]: Using a co-occurrence probability matrix,
the attacker can recover from 100% to 65% of the
queries

* [CGPR’15]: Improvement of the IKK attack, 100%
recovery

= Use padding as a countermeasure

‘Active’ Attacks

* [ZKP’16]: Non-adaptive file injection attacks

* Insert purposely crafted documents in the DB.
Use binary search to recover the query

log K injected documents

‘Active’ Attacks

* [ZKP’16]: Non-adaptive file injection attacks

* |nsert purposely crafted documents in the DB.
Use binary search to recover the query

* Counter measure: no more than T kw./doc.

(K/T) - log T injected documents

* Adaptive version of the attack
(K/T) + log T injected documents

‘Active’ Adaptive Attacks

* [ZKP’16]: File injection attacks
* Adaptive version of the attack

(K/T) + log T injected documents

* |f the attacker has prior knowledge about the
database (e.g. frequency distribution)

log T injected documents

‘Active’ Adaptive Attacks

* All these adaptive attacks use the update leakage:

* For an update, most SE schemes leak if the
iInserted document matches a previous query

* \We need SE schemes with oblivious updates

Forward Privacy

Forward Privacy

* An SE scheme is forward private if its update
protocol does not leak any information about the
updated keywords

L(op,w,ind) = L’(op, ind)
* |mportant feature: secure online build of the EDB

* Only one existing scheme so far [SPS’14]

= \ery close to ORAM (logarithmic updates)

(ind1

Add

indc) to

ST1(W) <

Add
(indy

,indc) tow

- M Add
7 indc+‘| tow

UT2(w) = UTc(w) UTc1(wW)
STao(w STe(w) STec+1(W)

o e

_/'\/‘\/‘

UT4(w) UTa(w)

H(.)
H(.)

ST1(W) < TipK STZ(W)< TPk

NJlse N\ sk~

UTc(w) UTc+1(w)

H(.)
H()

ek STC(W) ﬂ STe. (W)

NI~ N\TUsk

* Naive solution: STi(w) = F(Kw,i)
X Client needs to send c tokens
X Sending only Ky is not forward private

* Use a trapdoor permutation

>200poc¢ - Complexity

* Search(w): Optimal
Client: O(1)
Server: O(|DB(w)))

* Update(+,w, ind): Optimal
Client: O(1)
Server: O(1)

* Storage:
Client: O(K)
Server: O(N) Optimal

200h0C

* TDP r? RSA or Rabin
X Elements (STs) are large (2048 bits).
X Client storage is impractical

* Pseudo-randomly generate STo(w), and compute
STc(w) on the fly (only c is stored by the client)

v Efficient (non-iterative) using RSA
* Search is embarrassingly parallelizable
xd" o med AN E o Ay

200h0C - Security

* Update leakage: nothing Forward private

* Search leakage:
- search pattern

- ‘history’ of w: the timestamped list of updates of
keyword w

Adaptive security (ROM)

200h0C - Evaluation

* C/C++ full fledged implementation

* Server KVS: RockDB

* Evaluated on a desktop computer
4 GHz Core i7 CPU, 8GB RAM, SSD

https://gitlab.com/sse/sophos

https://gitlab.com/sse/sophos

200p0C - evaluation

0.045

s 0.04 }

E

2 0.035 |

C

()

2 003}

= &3

[

©

e 0.025 |

Z

sl e

B

5 oo

©

O]

@ 0.01 |
0.005

Database with 14e5 entries
Database with 14e6 entries
Database with 14e7 entries

' |
S ——

10

100

1000 10000
Number of matching documents

100000

200h0C

* Provable forward privacy
* Efficient search
* Asymptotically efficient update (optimal)

* |n practice, very low update throughput (4300 p/s -
20x slower than other work)

Security-Performance
radeoft

4 X
EHE
ORAM 20p0oC
X X

> [SPS’14]

= X X

% [KPR12][CJJ+’13]

Legacy
compatible
X Plain
X

>
Performance

Ongoing/future work

* |mprove the update throughput (get rid of RSA)
* Dynamic padding

* Thwart (hon-adaptive) file injection attacks

THANKS!

