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Searchable Encryption

Outsource data …


… securely


… keep search functionalities



Generic Solutions
We can use generic tools to solve this problem:



Generic Solutions
We can use generic tools to solve this problem:

Fully Homomorphic encryption


Run all computations on the server 
Complexity linear in the DB size



Generic Solutions
We can use generic tools to solve this problem:

Fully Homomorphic encryption


Run all computations on the server 
Complexity linear in the DB size

Oblivious RAM


Hide access pattern but… 
ORAM lower bound (logarithmic)
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Ad-hoc Constructions

Can we use less expensive solutions?

Yes, but …

… we have to leak some information

Security/performance tradeoff
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Security of SSE

Search(w)

Everything the server learns, he 
can compute from the leakage
The search protocol can be 
simulated from the leakage

L(w,DB(w))



Leakage



Leakage
Search leakage :


repetition of queries


results



Leakage
Search leakage :


repetition of queries


results

Update leakage:


updated documents


updated keywords


…
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Boolean queries & scalability [CJJKRS13]

↳ various extensions (dynamisms, wildcards, range 
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Passive vs. Active
(Almost) all previous results were proven secure in 
the honest-but-curious setting

But we can consider a very evil adversary who 
modifies search results …

… or the database 

Verifiable SSE



First try
We encrypt the reversed index: we consider  
{(w, ind) | w ∈ Dind}


MAC each pair: {(w, ind||F(w,ind)) | w ∈ Dind}


If the MAC is unforgeable, the server will not be 
able to add a false result


Yet he still is able to remove one result …


MAC DB(w) and return it for each search query
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Dynamic scheme
Let us consider the following operations:

Kyle searches w, the server retrieves DB(w) and 
MAC(DB(w))

Kyle updates the DB, on keyword w

Kyle searches w again. Instead of DB’(w), the 
server returns the old DB(w) and MAC(DB(w))

 
MACs are ineffective against replay attacks



Memory Checking

A user with limited storage abilities wants to 
maintain a large DB on a remote untrusted server


How many queries does the client have to make to 
the untrusted server per request


Lower bound: Ω(log n/log log n) (for n blocks)



Lower Bound on VSSE
We can write a reduction from memory checkers 
to VSSE


Encode each block as a document index, each 
block address as a keyword 


Block access: Search


Block update: Delete old index, add new index

 

Lower bound: Ω(log |W| / log log |W|)



Verifiable Map

Outsource a map data structure. 
Two types of constructions


Hash based: Merkle Hash tree 
Query and updates in log(n) (optimal)


Accumulator based 
Query in O(1),  Updates in O(nε) or 
Query in O(nε), Updates in O(1)



h0

h2h1

h3

h7 h8

h4

h9 h10

h6

h13 h14

h5

h11 h12

hi = H(h2i+1 || h2i+2)

Merkle Hash Tree



Cryptographic Accumulator

Short membership proof


E.g. E = {r1, … , rn} set of k bits primes 
f(E) = gr1…rn mod N where g ∈ QRN and N k’ > k bits 
RSA modulus


Can be built from other assumptions (DHE, BM)



Where are we now?

For each w ∈ W, Kyle stores MAC(DB(w))


This map is outsourced using a verifiable map


How to update?


Recompute MAC(DB(w)) every time it is modified


Incremental MAC/Hash



(Multi)Set Hashing

Input: (multi)set, output: a string whose value is 
independent of the elements’ order


Incremental: H(M ∪ M’) = H(M) ⟐ H(M’) for some ⟐


Collision resistance: hard to construct M1 ≠ M2 s.t. 
H(M1) = H(M2)



Set Hashing Constructions

General idea: let G be a group with generator g


H(M) = ∏a∈M gm(a)h(a)


Examples for G: (ZN, ×), (ZN, +), EC



Our generic construction

Set hash DB(w) for all w


Put the results in a verifiable map


When searching, get the hash from the VM, check 
it matches the awaited value


When updating, incrementally update the hash of 
DB(w) in the map



Complexity

Hash-based map: 
Search: O(log |W| + m), Update: O(log |W|)


Accumulator-based map v1: 
Search: O(m), Update: O(|W|ε)


Accumulator-based map v2: 
Search: O(m + |W|ε), Update: O(1)

Optimal with 3 different meanings
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To verify, first verify DB(s), then generate proofs for 
the proposition x ∈ Dind (or x ∉ Dind)
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Multiple Keywords



Next challenges

Improve multiple keywords verification (batch 
verifications ??)


Forward privacy


Better understanding of leakage, avoid leakage 
abuse attacks


