
SÉMINAIRE EMSEC - RAPHAEL BOSTDATE 09/03/2016

VERIFIABLE SYMMETRIC
SEARCHABLE ENCRYPTION

Searchable Encryption

Outsource data …

… securely

… keep search functionalities

Generic Solutions
We can use generic tools to solve this problem:

Generic Solutions
We can use generic tools to solve this problem:

Fully Homomorphic encryption

Run all computations on the server 
Complexity linear in the DB size

Generic Solutions
We can use generic tools to solve this problem:

Fully Homomorphic encryption

Run all computations on the server 
Complexity linear in the DB size

Oblivious RAM

Hide access pattern but… 
ORAM lower bound (logarithmic)

Ad-hoc Constructions

Can we use less expensive solutions?

Ad-hoc Constructions

Can we use less expensive solutions?

Yes, but …

Ad-hoc Constructions

Can we use less expensive solutions?

Yes, but …

… we have to leak some information

Ad-hoc Constructions

Can we use less expensive solutions?

Yes, but …

… we have to leak some information

Ad-hoc Constructions

Can we use less expensive solutions?

Yes, but …

… we have to leak some information

Security/performance tradeoff

Security of SSE

Security of SSE

Security of SSE

Security of SSE

Search(w)

Security of SSE

Search(w)

DB(w)

Security of SSE

Update(+, w, ind)

Security of SSE

Search(w)

Security of SSE

Search(w)

Everything the server learns, he
can compute from the leakage

Security of SSE

Search(w)

Everything the server learns, he
can compute from the leakage

Security of SSE

Search(w)

Everything the server learns, he
can compute from the leakage

L(w,DB(w))

Security of SSE

Search(w)

Everything the server learns, he
can compute from the leakage
The search protocol can be
simulated from the leakage

L(w,DB(w))

Leakage

Leakage
Search leakage :

repetition of queries

results

Leakage
Search leakage :

repetition of queries

results

Update leakage:

updated documents

updated keywords

…

Previous Results

Previous Results
First constructions [SWP00]

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Boolean queries & scalability [CJJKRS13]

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Boolean queries & scalability [CJJKRS13]

↳ various extensions (dynamisms, wildcards, range
queries, …)

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Boolean queries & scalability [CJJKRS13]

↳ various extensions (dynamisms, wildcards, range
queries, …)

Reduced update leakage [SPS14]

Previous Results
First constructions [SWP00]

Formalization of the security model [CGKO06]

Efficient dynamic constructions [KPR12]

Boolean queries & scalability [CJJKRS13]

↳ various extensions (dynamisms, wildcards, range
queries, …)

Reduced update leakage [SPS14]

…

Passive vs. Active
(Almost) all previous results were proven secure in
the honest-but-curious setting

Passive vs. Active
(Almost) all previous results were proven secure in
the honest-but-curious setting

But we can consider a very evil adversary who
modifies search results …

Passive vs. Active
(Almost) all previous results were proven secure in
the honest-but-curious setting

But we can consider a very evil adversary who
modifies search results …

… or the database

Passive vs. Active
(Almost) all previous results were proven secure in
the honest-but-curious setting

But we can consider a very evil adversary who
modifies search results …

… or the database

Passive vs. Active
(Almost) all previous results were proven secure in
the honest-but-curious setting

But we can consider a very evil adversary who
modifies search results …

… or the database

Verifiable SSE

First try
We encrypt the reversed index: we consider  
{(w, ind) | w ∈ Dind}

MAC each pair: {(w, ind||F(w,ind)) | w ∈ Dind}

If the MAC is unforgeable, the server will not be
able to add a false result

Yet he still is able to remove one result …

MAC DB(w) and return it for each search query

Dynamic scheme
Let us consider the following operations:

Dynamic scheme
Let us consider the following operations:

Kyle searches w, the server retrieves DB(w) and
MAC(DB(w))

Dynamic scheme
Let us consider the following operations:

Kyle searches w, the server retrieves DB(w) and
MAC(DB(w))

Kyle updates the DB, on keyword w

Dynamic scheme
Let us consider the following operations:

Kyle searches w, the server retrieves DB(w) and
MAC(DB(w))

Kyle updates the DB, on keyword w

Kyle searches w again. Instead of DB’(w), the
server returns the old DB(w) and MAC(DB(w))

Dynamic scheme
Let us consider the following operations:

Kyle searches w, the server retrieves DB(w) and
MAC(DB(w))

Kyle updates the DB, on keyword w

Kyle searches w again. Instead of DB’(w), the
server returns the old DB(w) and MAC(DB(w))

 
MACs are ineffective against replay attacks

Memory Checking

A user with limited storage abilities wants to
maintain a large DB on a remote untrusted server

How many queries does the client have to make to
the untrusted server per request

Lower bound: Ω(log n/log log n) (for n blocks)

Lower Bound on VSSE
We can write a reduction from memory checkers
to VSSE

Encode each block as a document index, each
block address as a keyword

Block access: Search

Block update: Delete old index, add new index

 

Lower bound: Ω(log |W| / log log |W|)

Verifiable Map

Outsource a map data structure. 
Two types of constructions

Hash based: Merkle Hash tree 
Query and updates in log(n) (optimal)

Accumulator based 
Query in O(1), Updates in O(nε) or 
Query in O(nε), Updates in O(1)

h0

h2h1

h3

h7 h8

h4

h9 h10

h6

h13 h14

h5

h11 h12

hi = H(h2i+1 || h2i+2)

Merkle Hash Tree

Cryptographic Accumulator

Short membership proof

E.g. E = {r1, … , rn} set of k bits primes 
f(E) = gr1…rn mod N where g ∈ QRN and N k’ > k bits
RSA modulus

Can be built from other assumptions (DHE, BM)

Where are we now?

For each w ∈ W, Kyle stores MAC(DB(w))

This map is outsourced using a verifiable map

How to update?

Recompute MAC(DB(w)) every time it is modified

Incremental MAC/Hash

(Multi)Set Hashing

Input: (multi)set, output: a string whose value is
independent of the elements’ order

Incremental: H(M ∪ M’) = H(M) ⟐ H(M’) for some ⟐

Collision resistance: hard to construct M1 ≠ M2 s.t. 
H(M1) = H(M2)

Set Hashing Constructions

General idea: let G be a group with generator g

H(M) = ∏a∈M gm(a)h(a)

Examples for G: (ZN, ×), (ZN, +), EC

Our generic construction

Set hash DB(w) for all w

Put the results in a verifiable map

When searching, get the hash from the VM, check
it matches the awaited value

When updating, incrementally update the hash of
DB(w) in the map

Complexity

Hash-based map: 
Search: O(log |W| + m), Update: O(log |W|)

Accumulator-based map v1: 
Search: O(m), Update: O(|W|ε)

Accumulator-based map v2: 
Search: O(m + |W|ε), Update: O(1)

Optimal with 3 different meanings

Implementation

Implementation

Multiple Keywords

Cash et al., CRYPTO’13: search DB(s⋀x) 
Generate DB(s), and for all ind ∈ DB(s), look if
x ∈ Dind

To verify, first verify DB(s), then generate proofs for
the proposition x ∈ Dind (or x ∉ Dind)

Multiple Keywords

Cash et al., CRYPTO’13: search DB(s⋀x) 
Generate DB(s), and for all ind ∈ DB(s), look if
x ∈ Dind

To verify, first verify DB(s), then generate proofs for
the proposition x ∈ Dind (or x ∉ Dind)

Multiple Keywords

Next challenges

Improve multiple keywords verification (batch
verifications ??)

Forward privacy

Better understanding of leakage, avoid leakage
abuse attacks

